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5Institut für Strömungsmechanik, Technische Universit¨at Dresden, Dresden, Germany
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Abstract
The differentially heated rotating annulus is a widely studied tabletop-size laboratory model of the general
mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and
meridional temperature gradient are quite well captured inthis simple arrangement. The radial temperature
difference in the cylindrical tank and its rotation rate canbe set so that the isothermal surfaces in the bulk tilt,
leading to the formation of baroclinic waves. The signatures of these waves at the free water surface have been
analyzed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference
constant) and under different initial conditions. In parallel to the laboratory experiments, five groups of the
MetStröm collaboration have conducted numerical simulations in the same parameter regime using different
approaches and solvers, and applying different initial conditions and perturbations. The experimentally and
numerically obtained baroclinic wave patterns have been evaluated and compared in terms of their dominant
wave modes, spatio-temporal variance properties and driftrates. Thus certain “benchmarks” have been created
that can later be used as test cases for atmospheric numerical model validation.

Zusammenfassung
Der differentiell beheizte rotierende Zylinderspalt ist ein bekanntes Experiment, um im Labormaßtab die
allgemeine Zirkulation der Atmosphäre in mittleren Breiten zu untersuchen. Die beiden wesentlichen Aspek-
te der atmosphärischen Zyklogenese, Rotation und meridionaler Temperaturgradient, sind auch Bestandteil
des Experimentes. Rotation und Temperaturgradient führen zu einer Neigung der Isothermen, eine Vor-
aussetzung für barokline Instabilität. Die so angeregten baroklinen Wellen, d.h. ihre Signatur im Ober-
flächentemperaturfeld, kann im Labor mittels Infrarot-Thermographie analysiert werden. Die Analysen wer-
den in der vorliegenden Arbeit für verschiedene Anfangsbedingungen und Rotationsraten bei konstantem
radialem Temperaturgradienten durchgeführt.

Parallel zu den Messungen führten fünf numerische Arbeitsgruppen aus der MetStröm Initiati-
ve numerische Simulationen durch. Die Modelle verwendetenverschiedene Löser und Subgitterskalen-
Parameterisierungen, die Simulationen wurden aber alle mit den Parametern des Laborexperimentes durch-
geführt. Die so erhaltenen Lösungen wurden im Hinblick auf die vorherrschende azimutale Wellenzahl, die
raum-zeitliche Varianz und die Driftrate mit den experimentellen Ergebnissen verglichen. Auf diese Weise
wurden “Benchmarks” geschaffen, die sich auch für eine zukünftige Validierung von numerischen meteoro-
logischen Modellen anbieten.

1 Introduction

In the endeavor to improve weather forecasting and
climate prediction techniques, the validation and fine-
tuning of numerical models of large-scale atmospheric
processes play clearly crucial roles. However, in such a
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complex system as the real atmosphere, validation tests
are especially difficult to perform. Besides the issues
that arise due to coarse-graining – a central problem of
the numerical modeling of any hydrodynamic problem –
in the case of atmospheric processes the unavoidable im-
perfection of the governing equations themselves is also
a considerable source of inaccuracies. In the commonly
applied hydro-thermodynamic equations the unresolved
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(or even physically not properly understood) processes
are either neglected or taken into account via empirical
parametrization. Thus, the separation of discretization
errors from the ones originating from the theoretical for-
mulation of a given model poses a real challenge to re-
searchers.

Yet, there is a way to carry out systematic and re-
producible tests under controlled circumstances, and to
capture a large segment of the complexity of these large-
scale flows through relatively simple, tabletop-size ex-
periments, based on the principle of hydrodynamic sim-
ilarity. Under laboratory conditions it is possible to ad-
just the governing physical parameters and thus to sep-
arate different processes that cannot be studied inde-
pendently in the real atmosphere. Therefore, labora-
tory experiments provide a remarkable test bed to val-
idate numerical techniques and models aiming to inves-
tigate geophysical flows. This was one of the primary
goals of the German Science Foundation’s (DFG) prior-
ity program MetStröm. Research focuses on the theory
and methodology of multiscale meteorological fluid me-
chanics modelling and accompanying reference experi-
ments supported model validation.

One of these reference experiments was the differen-
tially heated rotating annulus. This classical apparatus to
study the basic dynamics of the mid-latitude atmosphere
has been introduced by FULTZ et al. (1959) based on the
principles first suggested by VETTIN (1857). The two
most relevant factors of cyclogenesis, namely the plan-
etary rotation and the meridional temperature gradient
are quite well captured in this simple arrangement. The
set-up (Fig.1) consists of a cylindrical gap mounted on a
turntable and rotating around its vertical axis of symme-
try. The inner side wall of the annulus is cooled whereas
the outer one is heated, thus the working fluid experi-
ences a radial temperature gradient. At high enough ro-
tation rates the isothermal surfaces tilt, leading to baro-
clinic instability. The extra potential energy stored in
this unstable configuration is then converted into ki-
netic energy, exciting drifting wave patterns of temper-
ature and momentum anomalies. The basic underlying
physics of such baroclinic waves has been subject of ex-
tensive theoretical (EADY , 1949; LORENZ, 1963; MA-
SON, 1975), numerical (WILLIAMS , 1971; MILLER and
BUTLER, 1991;VON LARCHER et al., 2013) and exper-
imental (FRÜH and READ, 1997; SITTE and EGBERS,
2000; VON LARCHER et al., 2005; HARLANDER et al.,
2012) research throughout the past decades. Further-
more, some studies focused on the quantitative compar-
ison of temperature statistics (GYÜRE et al., 2007) and
propagation dynamics of passive tracers (JÁNOSI et al.,
2010) obtained from annulus experiments and from ac-
tual atmospheric data. Even meteorological data assim-
ilation techniques (RAVELA et al., 2010; YOUNG and
READ, 2013) and techniques operational in meteoro-
logical ensemble prediction (YOUNG and READ, 2008;
HARLANDER et al., 2009; HOFF et al., 2014) have also

been studied by using annulus data.
The experimental part of the present study was con-

ducted in the fluid dynamics laboratory of the Branden-
burg Technical University at Cottbus-Senftenberg (BTU
CS). The infrared thermographic snapshots of the drift-
ing baroclinic waves at the free water surface have been
analyzed in a wide range of rotation rates (keeping the
radial temperature difference constant) and under differ-
ent initial conditions. In parallel to the experiments,
five numerical groups of the MetStröm collaboration
(Goethe University Frankfurt, University of Heidelberg,
FU Berlin, TU Dresden and TU Munich) have con-
ducted simulations in the same parameter regime us-
ing different numerical approaches, solvers and sub-
grid parametrizations, and applying different initial con-
ditions and perturbations for stability analysis. The
obtained baroclinic wave patterns have been evaluated
through determining and comparing their statistical vari-
ance properties, drift rates and dominant wave modes.
Thus certain “benchmarks” are created that can be used
as test cases for atmospheric numerical model validation
in the future.

Similar comparative studies of experiments and nu-
merical simulations in baroclinic annuli stretch back
to the 1980s (JAMES et al., 1981; HIGNETT et al.,
1985; READ et al., 1997; READ, 2003; RANDRIA -
MAMPIANINA et al., 2006; READ et al., 2008). In these
works the comparisons were mostly based on pointwise
sub-surface temperature time series. The very same ex-
perimental apparatus that was used in the present work
set-up has already been used to test and validate subgrid-
scale parametrization methods of two of the numerical
models also used here (see the paper of BORCHERTet al.
(2014) in the present issue). In another recent compara-
tive study, the effect of the addition of a sloping bottom
topography to this set-up was analyzed both experimen-
tally and numerically (VINCZE et al., 2014). However,
to the best of our knowledge, the present study is the
very first to systematically compare different numerical
schemes and two series of experiments with different
initial conditions.

Our paper is organized as follows. Section 2 out-
lines the experimental set-up, and the experimental and
numerical methods used. The results are presented in
Section 3. In Section 4 we summarize the results and
discuss their implications on the physics of the underly-
ing dynamics.

2 Methods

2.1 Experimental apparatus and procedures

The laboratory experiments of the present study have
been conducted in the baroclinic wave tank of BTU CS.
This tank was mounted on a turntable, and was divided
by coaxial cylindrical sidewalls (Fig. 1) into three sec-
tions. The innermost compartment (made of anodized
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Figure 1: Schematic drawing of the laboratory set-up. For the
values of the geometric parameters shown, see the text. The counter-
clockwise direction of rotation is indicated.

aluminum) housed coolant pipes in which cold water
was circulated. The temperature in this middle cylin-
der was monitored via a digital thermometer and kept
constant by a thermostat with a precision of0.05 K. The
outermost annular compartment contained heating wires
and water as heat conductive medium. Here four ther-
mometers (identical to that of the middle cylinder) pro-
vided temperature data for a computer-controlled feed-
back loop to maintain constant temperature; for the tech-
nical details on the applied control methods we refer to
the paper of VON LARCHER et al. (2005). The tem-
peratures in the inner and outer sections were set to the
values of18.5±0.25◦C and26.5±0.25◦C, respectively,
yielding a radial temperature difference of∆T = 8±0.5
K.

The working fluid – de-ionized water – occupied
the annular gap ranging froma = 4.5 cm to b = 12
cm in the radial direction. The water depth was set to
D = 13.5 cm in all experimental runs, thus the vertical
aspect ratio of the cavity wasΓ = D/(b − a) = 1.8.
The water surface wasfree to enable the observation of
surface temperature patterns via infrared thermography
(the observed wavelength band is generally absorbed
by glass or acrylic, thus covering the tank with a rigid
lid was not possible). The physical properties of the
fluid are characterized by its kinematic viscosityν =
1.004 × 10−6 m2/s and its thermal conductivityκ =
0.1434×10−6 m2/s, yielding a Prandtl number ofPr ≡
ν/κ ≈ 7.0.

Since the temperature difference∆T as well as the
aforementioned geometric and material quantities were
kept constant throughout the experiments, rotation rate
(i.e. angular velocity)Ω was the single control param-
eter to be adjusted between the subsequent runs. The
minimum rotation rate investigated wasΩmin = 2.26
rpm (revolutions per minute), where the flow was found
to be axially symmetric, i.e. its radial and vertical struc-
ture was independent from azimuthal angleθ, indicating

Figure 2: Four typical thermographic snapshots of surface tem-
perature patterns in the rotating annulus. a) An axially symmetric
(m = 0) pattern atΩ = 2.28 rpm; b) A two-fold symmetric (m = 2)
baroclinic wave atΩ = 3.23 rpm; c)m = 3 at Ω = 4.20 rpm; d)
m = 4 atΩ = 6.16 rpm.

the absence of baroclinic instability. The highest inves-
tigated rotation rate wasΩmax = 20.91 rpm. Here, four-
fold symmetric baroclinic wave patterns were observed
(see the exemplary thermographic snapshots of Fig. 2).
Within the interval ranging fromΩmin toΩmax, our mea-
surements were taken at 17 different rotation rates. For
each of these cases, two types of initial conditions were
applied: the so-called “spin-up” and “spin-down” se-
quences. In the former (latter) initialization procedure
the target rotation rateΩ was approached starting from
the previously studied smaller (higher) rotation rateΩi,
with |Ω − Ωi| ≈ 1 rpm. The rotation rate was then
gradually increased (decreased) byδΩ ≈ 0.1 rpm in ev-
ery 2 minutes; thus, it took approximately20 minutes to
reach the requiredΩ from Ωi. 10 minutes after arriving
atΩ the data acquisition started and lasted for40 to 80
minutes in each case. Afterwards this gradual increasing
(decreasing) procedure of the rotation rate continued in
order to reach the nextΩ, with the previous parameter
point asΩi, providing a long “spin-up” (“spin-down”)
experiment series. Thus, in total17 × 2 measurements
were performed and evaluated. Note, that in order to
enable the standard initialization procedures at the end
parameter pointsΩmin andΩmax, the initial valueΩi

was set smaller thanΩmin or larger thanΩmax, when re-
quired. However, no data acquisition took place at these
“out-of-range” parameter points.

The infrared camera was mounted above the middle
of the tank and was fixed in the laboratory frame (not
co-rotating). In every∆t = 2 s,640×480-pixel thermo-
graphic snapshots were taken, providing a precision of
around0.03 K for temperature differences. The obtained
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temperature fields can be considered surface tempera-
ture patterns, since the penetration depth of the applied
wavelength into water is measured in millimeters. The
captured snapshots were acquired and stored by a com-
puter, where they were converted to ASCII arrays (by
organizing the temperature values from all pixels into
matrix format) for further evaluation.

The most important classic non-dimensional param-
eters widely used to compare the results obtained from
different baroclinic annulus set-ups are the Taylor num-
ber Ta and thermal Rossby numberRoT (also known
as Hide number). The former is basically a non-
dimensional measure of rotation rateΩ and reads as

Ta =
4Ω2(b− a)5

ν2D
, (2.1)

whereasRoT expresses the ratio of the characteristic
velocity of the thermally driven flow to the rotation rate
in the form of

RoT =
Dgα∆T

Ω2(b− a)2
, (2.2)

where g is the acceleration due to gravity andα =
2.07 × 10−4 K−1 represents the volumetric thermal ex-
pansion coefficient of the working fluid. Note, that when
the horizontal temperature difference∆T is comparable
to the vertical one, i.e.∆Tz ≈ ∆T holds (a fairly good
assumption in the present study), (2.2) corresponds to
the Burger numberB, defined as the squared ratio of the
Rossby deformation radiusRd =

√
gdα∆Tz/Ω to the

gap widthb− a, B = gdα∆Tz/(Ω
2(b− a)2).

In the case of the present study where the experi-
ments were conducted at a practically constant value
of ∆T , an inverse proportionalityRo ∝ Ta−1 holds;
thus either one of these parameters per se sufficiently de-
scribes the applied conditions. Nevertheless, to demon-
strate the broader context of the studied domain, we
present a conceptualTa−RoT regime diagram in Fig. 3.
The anvil-shaped thick (blue) curve represents the lay-
out of the so-called neutral stability curve (as obtained
numerically byVON LARCHER et al. (2013), to the left
of which the flow is axially symmetric (radial “sideways
convection”). To the right of the curve, the emergence of
steady baroclinic wave patterns (as the ones in Fig. 2b,c
and d) characterizes the flow, which – for even higher
values ofTa – become irregular in shape as the system
approaches geostrophic turbulence (a state not studied in
the present paper). The curve corresponding to the con-
stant radial temperature difference∆T = 8 K that lay
within the focus of the present work is also indicated (by
a dotted curve), along with the experimental parameter
points and the four benchmark points (to be addressed
later).

2.2 Numerical methods
In this subsection we briefly describe the different nu-
merical models and methods used for the numerical sim-

Figure 3: The neutral stability curve (thick blue line) in the param-
eter plane ofTa andRoT , as obtained via linear stability analysis
by VON LARCHER et al. (2013), using the geometrical and mate-
rial parameters of the BTU C-S wave tank. The dotted line corre-
sponding to the studied radial temperature difference∆T = 8 K is
also indicated, along with the experimental data points (squares) and
the benchmark parameter points (circles) of the present comparative
study (see text).

ulations.

2.2.1 Governing equations and general numerical
properties

The applied numerical models computed approximate
solutions of the hydrodynamic equations of motion in
the Boussinesq approximation (VALLIS , 2006), using
different initialization procedures, grids, time steps,
boundary conditions and sub-grid–scale parametrization
schemes. The overall geometric parameters of the sim-
ulation domain corresponded to the aforementioned di-
mensions of the annular cavity of the laboratory set-up.
The governing equations themselves read as:

∂~u

∂t
+ (~u · ∇)~u = −2Ω~ez × ~u+Ω2r ~er

− 1

ρ0
∇p +

δρ

ρ0
g ~ez + ν∇2~u, (2.3)

∇ · ~u = 0, (2.4)
∂T

∂t
+ (~u · ∇)T = κ∇2T, (2.5)

where ~er and ~ez denote the unit vectors in the radial
and vertical directions (pointing upwards), respectively,
~u represents the velocity field,p is the pressure andδρ
denotes the difference between the density of the given
fluid parcel and the reference densityρ0 (in the Boussi-
nesq approximation|δρ| ≪ ρ0 holds). The first and sec-
ond terms on the right hand side of (2.3) account for the
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Coriolis and centrifugal forces, respectively, which – be-
ing inertial forces – appear in the co-rotating reference
frame. This form of the equation was used in the im-
plementations of the cylFloit, EULAG, and LESOCC2
models. In INCA the centrifugal term was omitted,
since it is generally negligible in the investigated param-
eter range. For HiFlow3 the governing equations were
solved in the non-rotating “laboratory frame”, hence
there both inertial force terms were absent and the rota-
tion of the tank entered the dynamics through the bound-
ary conditions.

In all codes, the boundary conditions for the temper-
ature were isothermal at the inner and outer sidewalls of
the cavity (i.e. at radiir = a and r = b). The cor-
responding temperatures are denoted withT |r=a ≡ Ta

andT |r=b ≡ Tb, respectively, yielding∆T ≡ Tb−Ta =
8.0 K, in agreement with the laboratory set-up. On
the top (z = D) and bottom (z = 0) boundaries no-
flux conditions were applied for the temperature (i.e.
∇T ~ez|z=0,D ≡ 0). For the velocities at the bottom and
lateral sidewalls, the working fluid was assumed to co-
rotate with the tank (rigid body rotation). For the codes
implemented in the co-rotating frame this yields no-slip
conditions (~u|z=0 = ~u|r=a = ~u|r=b ≡ 0), whereas
for HiFlow3 (non-rotating frame) this condition trans-
lates to~u|r = rΩ~eθ for r = a and r = b at all
depths, and for all values ofr at the bottom (z = 0).
In all codes at the “free” water surface the slip condi-
tions (∇u~ez|z=D = ∇v ~ez|z=D ≡ 0) andw|z=D ≡ 0
were applied (u andv being the two horizontal andw
the vertical velocity components).

The boundary conditions, reference frames, grid
types and sizes and other general properties of the ap-
plied numerical codes are summarized in Table 1. In the
following subsections we briefly introduce these models
and discuss their most important features.

2.2.2 cylFloit

The implementation of thecylindrical flow solver with
implicit turbulence model(cylFloit) is described in
BORCHERTet al. (2014). The numerical model is based
on a finite-volume discretization of the governing equa-
tions on a regular cylindrical grid. The subgrid-scale
turbulence is implicitly parameterized by the Adaptive
Local Deconvolution Method (ALDM), see HICKEL
et al. (2006). Time integration is done using the ex-
plicit low-storage third-order Runge-Kutta method of
WILLIAMSON (1980).

The temperature dependence of the density deviation
δρ(T ), kinematic viscosityν(T ) and thermal diffusiv-
ity κ(T ) was approximated in the form of second-order
polynomial fits to empirical reference data for the stud-
ied temperature range. Because of this temperature de-
pendence,ν andκ depend implicitly on space and time,
which is the reason why the viscous stress and the heat
conduction have slightly different forms than the right-
most terms in (2.3) and (2.5). In order to simulate the

spin-up and spin-down of the annulus, the Euler accel-
eration−(dΩ/dt)r is added to the right-hand side of the
azimuthal component of (2.3).

Three series of numerical simulations have been per-
formed by cylFloit: the “from scratch” series (i), where
the studied state at a target rotation rateΩ was reached
after initializing the system from a non-rotating axially
symmetric initial state; and the “spin-up” (ii) and “spin-
down” (iii) series, where a rotation rate evolutionΩ(t)
similar to the aforementioned laboratory sequences was
imitated. The numerical parameters of these simulations
are listed in the second column of Table 1.

(i) The “from scratch” simulations: In this ini-
tialization procedure, firstly an axially symmetric (thus,
two dimensional; 2d) stationary solution was computed
within a physical time oft2d = 10800 s (3 hrs), with
Ω = 0, but with the aforementioned boundary condi-
tions. To obtain an axially symmetric solution, the num-
ber of azimuthal grid cells was set toNθ = 1, thus re-
ducing the problem to 2d. Then, starting from this state
the full 3d simulation was initialized with a spin-up from
zero angular velocity to its final valueΩf as:

Ω (t) =











0, 0 ≤ t ≤ t2d
Ωf

2 {1− cos
[

π
τ (t− t2d)

]

}, t2D < t ≤ t2d + τ

Ωf , t > t2d + τ

.

(2.6)

HereΩf is the final constant angular velocity used in
the experiment andτ denotes the spin-up period of the
rotating annulus ranging from20 s for Ωmin to 910
s for Ωmax (BORCHERT et al., 2014). To trigger the
formation of baroclinic waves, low amplitude random
perturbations were added to the temperature field, with
a maximum amplitude ofδTpert = 0.03|Tb − Ta|. This
3d simulation took another10800 s, so that the waves
could fully develop. A subsequent integration time of
7200 s (2 hrs) at maximum was used to record the data
analysed in the present work. For further information on
this initialization method, we refer to BORCHERTet al.
(2014).

(ii) Spin-up simulations: In these cases an initial
angular velocityΩi and a final angular velocityΩf > Ωi

were chosen. The time evolution of the angular velocity
Ω(t) was then computed according to the formula:

Ω (t) =

{

Ωi +
Ωf−Ωi

2

{

1− cos
(

π t
τ ′

)}

, t ≤ τ ′

Ωf , t > τ ′
,

(2.7)

whereτ ′ means the spin-up or spin-down period. The
first simulation started withΩi = 0 rpm andΩf = 2
rpm, the second simulation usedΩi = 2 rpm and
Ωf = 3 rpm, the thirdΩi = 3 rpm andΩf = 4 rpm and
so forth up to the last spin-up simulation withΩi = 19
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cylFloit EULAG HiFlow3 INCA LESOCC2

reference
frame

co-rotating co-rotating non-rotating co-rotating co-rotating

centrifugal
term?

yes yes no no yes

Euler
acceleration?

yes no no no no

initialization
procedure

spin-up/spin-down,
with dynamicΩ(t)
from the end state of
the previous run
(at differentΩ),
or from non-rotating
axisymmetric basic state

rotation turned on
instantly

firstly, stationary eqs.
solved with increased
ν andκ,
which then are set
instantly to physically
correct values

rotation turned on
instantly

rotation turned on
instantly, with
initial state
“inherited” from
the final state
of the previous
run (differentΩ)

temperature
boundary
conditions

Ta = 24◦C
Tb = 32◦C

Ta = 16◦C
Tb = 24◦C

Ta = 20◦C
Tb = 28◦C

Ta = 16◦C
Tb = 24◦C

Ta = 23.5◦C
Tb = 31.5◦C

isothermal at the sidewalls (Ta: inner,Tb: outer), no-flux at the top and bottom boundaries (∇T ~ez|z=0,D ≡ 0)

velocity
boundary
conditions

no-slip (~u ≡ 0)
at the bottom
and sidewalls,
free slip
(~u · ~ez = 0)
at the top

no-slip (~u ≡ 0)
at the bottom
and sidewalls,
free slip
(~u · ~ez = 0)
at the top

rigid body rotation at
all boundaries
(~u = rΩ~eθ)

no-slip (~u ≡ 0)
at the bottom
and sidewalls,
free slip
(~u · ~ez = 0)
at the top

no-slip (~u ≡ 0)
at the bottom
and sidewalls,
free slip
(~u · ~ez = 0)
at the top

grid type
regular
cylindrical

equidistant
Cartesian

cylindrical
mesh

Cartesian
mesh blocks

curvilinear
Cartesian
mesh

number of
grid points

40× 60× 50
(r − θ − z)

192× 192× 67
(x− y − z)

21× 76× 41
(r − θ − z)

160× 160× 90
(x− y − z)

1: 76× 213× 137
2: 86× 241× 153
(r − θ − z)

grid points
total

120 000 2 469 888 65 436 2 304 000
1: 2 217 756
2: 3 171 078

subgrid-scale
parametrization ALDM n.a. n.a. ALDM n.a.

grid spacing
(min./max.)

∆r : 1.88 mm
r∆θ : 4.71/12.57 mm
∆z : 2.7 mm

∆x;∆y : 1.35 mm
∆z : 2.04 mm

∆r : 2.785/5.250 mm
r∆θ : 3.720/9.921 mm
∆z : 1.700/5.625 mm

∆x;∆y : 1.55 mm
∆z : 0.4/1.8 mm

1:
∆r : 0.6/1.4 mm
r∆θ : 1.3/3.5 mm
∆z : 0.6/1.1 mm
2:
∆r : 0.4/1.6 mm
r∆θ : 1.2/3.1 mm
∆z : 0.3/1.0 mm

integration
time stepδt

〈δt〉 ≈ 0.1 s
(adaptive)

0.0025 s 0.25 s

〈δt〉 ≈ 0.05 s
adaptive in the
initial phase;
afterwards:
δt = 0.0375 s

1: 〈δt〉 ≈ 0.033 s
2: 〈δt〉 ≈ 0.018 s
(adaptive)

sample rate
∆t

3 s;5 s 5 s 0.25 s 5.625 s 1 s

Table 1: Summary of the basic properties of the applied numerical models.
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rpm andΩf = 20 rpm. The spin-up period was set to
τ ′ = 1200 s (20 min) in order to imitate the typical spin-
up time scale of the laboratory runs. After the spin-up
period the simulation took another1800s (30 min). Each
simulation was initialized with fields from the previous
simulation.

(iii) Spin-down simulations: The parameters and
the procedures of the spin-down series were the same
as for the spin-up runs, the only difference being that in
this caseΩi > Ωf holds. The first spin-down simulation
was initialized with the results from the last spin-up
simulation. It therefore usedΩi = 20 rpm andΩf = 19
rpm, the nextΩi = 19 rpm andΩf = 18 rpm, and so
forth down toΩi = 2 rpm andΩf = 0 rpm. After the
spin-down period ofτ ′ = 1200 s the simulations here
took another1200 s only, which was long enough for
the flow to equilibrate.

2.2.3 EULAG

The EULAG framework is a multipurpose multi scale
solver for geophysical flows, see PRUSA et al. (2008)
for a comprehensive review. The framework formulates
the non-hydrostatic anelastic fluid equations of motion,
e.g., GRABOWSKI and SMOLARKIEWICZ (2002), that
can be solved either in Eulerian flux form or in semi-
Lagrangian advective form, and it allows for a number of
assumptions for particular flow characteristics, specif-
ically the compressible/incompressible Boussinesq ap-
proximation, incompressible Euler/Navier-Stokes equa-
tions, and fully compressible Euler equations. The gov-
erning partial differential equations are evaluated with
a semi-implicit non-oscillatory forward-in-time (NFT)
algorithm and a finite volume discretization (SMO-
LARKIEWICZ , 1991; SMOLARKIEWICZ and MARGOLIN,
1997, 1998). EULAG has been successfully applied to
a number of geophysical problems, documented by the
large number of publications in the past years, see the
list of publications with respect to applications on the
EULAG model website at
http://www.mmm.ucar.edu/eulag/pubappl.html, ranging
from cloud microscale to synoptic and global scale in
atmospheric flows, as well as it was used for modeling
oceanic flows. It is worth mentioning that also solar con-
vection (ELLIOTT and SMOLARKIEWICZ , 2002), and
urban flows (SCHRÖTTLE and DÖRNBRACK, 2013),
were studied, moreover, EULAG has been also applied
for simulating injuries of the human brain, treating it
as a viscoelastic fluid (COTTER et al., 2002). Apart
from the possibility of considering particular flow char-
acteristics as mentioned above, EULAG also provides
a framework for Direct Numerical Simulation (DNS),
Large Eddy Simulation (LES), and implicit LES (ILES).
We here use the DNS approach.

For the purposes of the present study the general EU-
LAG framework has been adapted as follows. The side-
walls and the end walls of the annulus were modeled

with the immersed boundary approach (cf. GOLDSTEIN
et al. (1993)), where fictitious body forces in the govern-
ing equation of motion are incorporated to represent no-
slip boundaries which leads to a damping of the solution
in an appropriate time interval. SMOLARKIEWICZ et al.
(2007) gives a detailed description of the implementa-
tion of the immersed boundary approach in the EULAG
flow solver. In our study, the damping parameters were
set so that the motion at the boundaries was damped to
zero within a single time step. The properties of the grid,
the time step and the boundary conditions are summa-
rized in the third column of Table 1.

The governing equations (2.3) to (2.5) were solved in
the Boussinesq approximation on a Cartesian grid. For
the ρ(T ) dependence a linear decrease of density with
respect to temperature was assumed with volumetric
thermal expansion coefficientα = 2.07 × 10−4 K−1,
as given atTref = 20◦C. The Prandtl number was set to
Pr = 7, corresponding to the properties of de-ionized
water.

2.2.4 HiFlow3

HiFlow3 is a multi-purpose C++ finite element software
providing tools for efficient and accurate solution of a
wide range of problems modeled by partial differential
equations (PDEs), cf. HEUVELINE (2010); HEUVELINE
et al. (2012). It follows a modular and generic approach
for building efficient parallel numerical solvers and in-
troduces parallelity on two levels: coarse-grained par-
allelism by means of distributed grids and distributed
data structures, and fine-grained parallelism by means of
platform-optimized linear algebra back-ends (e.g. GPU,
Multicore, Cell, etc.). Further information about this
open source project can be found on the project’s web-
sitehttp://hiflow3.org/. For the baroclinic wave tank sce-
nario the governing equations (2.3) to (2.5) were consid-
ered in cylindrical coordinates in a non-rotating frame,
thus the inertial force terms of (2.3) were not present
in this implementation. The rotation of the system was
hence taken into account by setting the proper boundary
conditions at the lateral and bottom sidewalls for the az-
imuthal velocity component, as discussed at the begin-
ning of this section. The grid properties, boundary con-
ditions and other numerical parameters are summarized
in the fourth column of Table 1. Material parametersν
andκ were set constant (with their standard values for
de-ionized water at reference temperatureTref = 20◦C),
and for the thermal expansion the linear form of

δρ

ρ0
= −α(T − Tref), (2.8)

was used with the standard value ofα = 2.07 × 10−4

K−1.
For the calculation of the initial temperature and

velocity fields the stationary version of the governing
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equations (2.3)-(2.5) were considered, i.e:

(~u · ∇)~u = − 1

ρ0
∇p− α(T − T0)g~ez + νi∇2~u,

∇ · ~u = 0,

(~u · ∇)T = κi∇2T,

(2.9)

with the aforementioned boundary conditions. For the
determination of stationary solutions, increased values
of thermal diffusivity and kinematic viscosity in the
forms of νi = 100 · ν and κi = 100 · κ were ap-
plied for reasons of numerical stability. The result-
ing rotation-symmetric states were used to initialize the
time-depending simulations. Since the rotation rate of
the tank was kept fixed, no spin-up or spin-down proce-
dure was applied. Instead, slightly perturbed versions of
the initial state were considered to investigate the initial
state’s influence on the developing baroclinic wave pat-
terns. The temperature perturbation that was applied in
some of the simulations is defined in terms of the max-
imum perturbationM [K] and azimuthal wave number
k:

δT (r, θ, z) = M sin

(

r − a

b− a
π

)

cos(kθ) sin
( z

D
π
)

,

for r ∈ [a, b], θ ∈ [0, 2π], and z ∈ [0,D]. In the
perturbed numerical simulations presented in this paper,
M = 0.25K andk = 1 was chosen.

The resulting stationary velocity field and the cor-
responding (occasionally perturbed) temperature field
were used as the initial conditions~u0 and T0 of the
time-dependent problem and a simulation time of be-
tween about1, 000 s up to2, 500 s have been consid-
ered. The governing equations are solved on a cylindri-
cal mesh with65, 436 points based on a finite element
method. Cellwise tri-quadratic velocity and tempera-
ture functions and piecewise tri-linear pressure functions
were used. This type of so-called Taylor-Hood elements
are known to be stable in the sense that they fulfil the inf-
sup condition (BREZZI, 1974). In Table 2, an overview
of the grid properties (repeated from Table 1), accom-
panied with the points of the degrees of freedom (DOF)
of the applied finite element method are given. On this
grid, the state of the discrete solution (velocity, pres-
sure, and temperature) is described byN = 2, 084, 604
DOF at each point in time. In time, the Crank-Nicholson
scheme was applied to the governing equations, result-
ing in a fully coupled nonlinear equation system with all
N unknowns for each time step.

For the solution of the nonlinear problem in each
time step, Newton’s method was applied. In a typical
time step, 2 or 3 steps of the Newton iteration were
sufficient to solve the problem adequately. The linear
equation system within each Newton step is assembled
and solved on a High-Performance Computer system.
A GMRES solver has been applied with block-wise
incomplete LU preconditioner (ILU++ MAYER (2007)),

which required ca. 200 iterations in a typical calculation.

2.2.5 INCA

INCA is a multi-purpose engineering flow solver for
both compressible and incompressible problems using
Cartesian adaptive grids and an immersed boundary
method to represent solid walls that are not aligned with
grid lines. INCA has successfully been applied to a wide
range of different flow problems, ranging from incom-
pressible boundary layer flows (HICKEL et al., 2008) to
supersonic flows (GRILLI et al., 2012).

In the current context the incompressible module of
INCA was used with an extension to fluids with small
density perturbations governed by the Boussinesq equa-
tions (2.3) to (2.5) in a co-rotating reference frame,
with the exception of the centrifugal term in (2.3). The
governing equations are discretized by a finite-volume
fractional-step method (CHORIN, 1968) on staggered
Cartesian mesh blocks. The grid was equidistant in
the horizontal directions and refined towards the bottom
wall in the vertical direction. The domain was split into
32 grid blocks for parallel computing. For the spatial
discretization of the advective terms the Adaptive Lo-
cal Deconvolution Method (ALDM) with implicit turbu-
lence parameterization was used (HICKEL et al., 2006).
For the diffusive terms and the pressure Poisson solver
a non-dissipative central scheme with 2nd order accu-
racy was chosen. For time advancement the explicit
third-order Runge-Kutta scheme of SHU (1988) was
used. The time step is dynamically adapted to satisfy
a Courant-Friedrichs-Lewy condition withCFL ≤ 1.0.
The Poisson equation for the pressure is solved at every
Runge-Kutta sub-step, using a Krylov subspace solver
with algebraic-multigrid preconditioning. The general
applicability of INCA in the Boussinesq approximation
with ALDM as an implicit turbulence SGS model to
stably stratified turbulent flows has been demonstrated
in REMMLER and HICKEL (2012) and REMMLER and
HICKEL (2013).

To represent the annulus geometry within Cartesian
grid blocks in INCA, two cylindrical immersed bound-
aries were used representing the lateral sidewalls of
the flow cavity. The Conservative Immersed Interface
Method of MEYER et al. (2010) was employed to im-
pose the boundary conditions (together with other basic
numerical properties), that are listed in the fifth column
of Table 1. The density changes with temperature were
parametrized in a linear approximation, with the same
value ofα as for EULAG and HiFlow3.

The simulations were initialized with a stable tem-
perature stratification. Att = 0 the wall temperature and
the rotation were switched on instantaneously (no spin-
up or spin-down was applied). As mentioned above,
during the initial phase, the integration time step was
adjusted dynamically and fluctuated aroundδt ≈ 0.05
s. In the period of constant step size, its value was
δt = 0.0375 s. The total physical duration of each run
ranged from750 s to1500 s.
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Grid points / DOF points for pressure DOF points for velocity and temperature

Points inr − θ − z 21× 76× 41 41× 152 × 81

Points total 65, 436 504, 792

∆rmin/max 2.785/5.250 mm 1.438/2.625 mm
r∆θmin/middle/max 3.720/6.821/9.921 mm 1.860/3.410/4.961 mm

∆zmin/max 1.700/5.625 mm 0.850/2.813 mm

Table 2: Parameter overview of the grid and the Lagrange points (DOF)of the applied finite element method by HiFlow3.

2.2.6 LESOCC2

The multi-purpose solver LESOCC2 (FRÖHLICH, 2006;
HINTERBERGERet al., 2007) was used to solve the gov-
erning equations (2.3) to (2.5) in Cartesian coordinates
from a co-rotating reference frame. The discretization
method applied is a finite volume method with a collo-
cated variable arrangement on curvilinear coordinates.
For time integration a fractional step method was em-
ployed, consisting of a Runge-Kutta scheme as predic-
tor and a pressure-correction equation as corrector (ZHU
and RODI, 1992). The momentum interpolation of RHIE
and CHOW (1983) was incorporated in the discretiza-
tion for pressure-velocity coupling. Parallelization was
realized by domain decomposition on the basis of block-
structured grids and was implemented with MPI.

Similarly to cylFloit (and to the actual experiment)
“spin-up” and “spin-down” sequences were conducted.
The first simulation of the “spin-up” sequence was ini-
tiated from a stably stratified axially symmetric, non-
rotating state. Then the rotation was switched on imme-
diately. The next simulation at a higher rotation rateΩ
was initiated analogously, but this time the final velocity
and temperature fields of the preceding simulation were
used as initial conditions. This procedure was repeated
until Ωmax = 20 rpm was reached (in 8 subsequent sim-
ulations), and then the backward (“spin-down”) series
started, in which the runs were initiated from the final
state obtained at a higherΩ, in the same manner.

The properties of the boundary conditions, as well
as the other basic numerical parameters are listed in
the last column of Table 1. For discretization two dif-
ferent non-equidistant curvilinear, body-fitted and block
structured grid meshes were used. The time steps were
adapted automatically due to a combined convection-
diffusion criterion, and varied in the regime:δt ∈
(0.0177 s; 0.0377 s).

2.3 Data processing

To reduce the parameter space to investigate, from the
(either experimentally or numerically) obtained temper-
ature fields close to the free water surface a path-wise
temperature profileT (θ) was extracted along a circular
contour at mid-radiusrmid = (a + b)/2 = 8.25 cm for
each available time instant (black circle in the exemplary
experimental thermographic image in Fig. 4a). In the
cases where the temperature data were stored in Carte-
sian grids (i.e. for EULAG, INCA and for the laboratory

Figure 4: Three steps of data processing, demonstrated on a single
thermographic snapshot of the laboratory experiment. The tempera-
ture values of the raw image are (a) extracted along a circular con-
tour at mid-radiusrmid, thus the azimuthal temperature profile (b)
is obtained. The Fourier components of integer wave numbersare
then determined for each time step. In this exemplary case modes
m = 3, 4 and 6 are shown by red, blue and green curves, respec-
tively.

experiment itself), linear interpolation was applied to
gain equally spaced azimuthal temperature profiles (e.g.
the black curve of Fig. 4b). During post-processing the
data were transformed so that the azimuthal angleθ was
measured clockwise from a given co-rotating point. For
the experimental and HiFlow3 data – which were given
in the reference frame of the laboratory – the rotation of
the tank also had to be compensated to yield the appro-
priate co-rotating measure ofθ.

As mentioned before, the experimentally observed
thermal structures were treated as the temperature pat-
terns at the water surface (z = D = 13.5 cm). Also in
the cases of EULAG, HiFlow3 and LESOCC2 the tem-
perature fields of the uppermost grid level were consid-
ered. For cylFloit and INCA, however, the temperature
profiles were extracted from the somewhat lower level
of z = 10 cm.

In order to determine the dominant azimuthal wave
modes, their corresponding amplitudes and drift rates (to
be discussed in the next section), the temperature pro-
filesT (t, θ) were analyzed using discrete spatial Fourier
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decomposition. After subtracting the mean temperature
〈T (θ; t)〉 (averaged over the whole azimuthal domain of
the contour at each time instantt), the remaining fluc-
tuations could be expressed as amplitudesAm(t) and
phasesφm(t) of trigonometric functions with integer
wave numbersm = 1, 2, · · · , as:

T (θ; t)− 〈T (θ; t)〉 ≈
∑

m

Am(t) sin(mθ + φm(t)).

(2.10)
Fig. 4b demonstrates this step, showing three (exemplar-
ily selected) components:m = 3 (red),m = 4 (blue)
andm = 6 (green) at a given time instant. The time se-
ries ofAm(t) andφm(t) of the different numerical mod-
els and the experiments could then be easily compared
using various standard methods of signal processing, to
be discussed in the following section.

3 Results

3.1 Wave numbers

Firstly, the time averaged amplitudes〈Am〉 of the spatial
Fourier components were determined in each (either ex-
perimental or numerical) case using the above described
methodology. For this averaging the transient part of the
wave evolution was omitted, only the quasi-stationary
part of each time series was retained. To test quasi-
stationarity, we sliced the time seriesAm(t) in ques-
tion into 10-20 disjoint sections of equal length, and
calculated their means and standard deviations. If the
obtained statistical quantities were found to agree with
each other and with those of the original long time se-
ries within a5% margin, than the record was accepted
as quasi-stationary.

The time averaged spatial Fourier spectra〈Am〉(m)
showed, that besides the wave number corresponding
to the main azimuthal symmetry properties of a given
baroclinic wave, the smaller-scale structures of the sur-
face temperature field also leave a pronounced spectral
“fingerprint”. In the Fourier space, these patterns are
represented as harmonics of the basic wave number. It
is to be emphasized, that the term ‘harmonic’ here is
meant strictly in the sense of integer multiples of the
wave number, without any further implications on the
dynamics.

3.1.1 A conceptual demonstration

As a demonstration of the physical origin of such spec-
tral peaks, an exemplary case is shown in Fig. 5. The
top left inset shows one of the original images of a given
laboratory experiment, where the four-fold symmetric
shape of the temperature field is apparent. The bottom
right inset depicts the same image as transformed to po-
lar coordinates: the yellow line marks mid-radiusrmid,
and the corresponding pathwise temperature profile is
also given underneath. The spatial Fourier spectra of

Figure 5: Spatial Fourier spectra (orange), extracted from the quasi-
stationary part of a laboratory experiment (Ω = 17.1 rpm, spin-
down series), and their temporal average in the lowerm-domain
(black). In the inset, a typical thermographic snapshot is shown in
polar coordinates, and the corresponding one dimensional tempera-
ture profile atrmid (red curve).

such profiles, taken at different time instants during the
same experimental run are plotted as orange curves in
the main panel. Their average is also indicated (thick
black curve). Manifestly, alongside the peak ofm = 4,
another significant spectral peak appears atm = 8,
caused by the warm jet that is meandering between cold
eddies (cf. insets).

In several cases among the laboratory experiments,
such geometric “harmonics” even surpassed the “basic
mode” in amplitude. Therefore, in order to be consistent
with the traditional visual classification of wave num-
bers, not necessarily the largest peak was labeled the
so-calleddominant wave number. Instead, the follow-
ing algorithm was applied: (i) all the significant peaks
of the time-averaged spectra were determined. (ii) If
two or more peaks appeared at wave numbers that are
integer multiples of the first one, then the wave number
m of the first peak was considered to be the dominant
wave number. Even if its average amplitude〈Am〉 is not
the largest of all, this definition still implies that the pat-
terns bear an overall symmetry to azimuthal rotation by
2π/m (i.e. the autocorrelation of the temperature profile
exhibits its largest positive peak at2π/m).

3.1.2 The dominant wave numbers

The above defined dominant wave numbers are pre-
sented in Fig. 6a as a function of rotation rate
Ω, as found in the laboratory experiments. Appar-
ently, large hysteresis can be observed, in qualitative
agreement with the findings of several previous stud-
ies (MILLER and BUTLER, 1991; SITTE and EGBERS,
2000; VON LARCHER et al., 2005), implying multiple
equilibria. A broad rotation rate regime (ranging from
3.9 rpm< Ω < 17.1 rpm) exhibited different wave
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Figure 6: “Subway map” of the baroclinic annulus: the dominant
wave numbers as a function of rotation rateΩ as found in the
experiments (a) and in the cylFloit simulations (b). The experimental
hysteresis regime of (a) is repeated in panel (b) with dash-dotted
lines.

numbers in the “spin-up” and “spin-down” series, with
m = 3 andm = 4 being the dominant modes, respec-
tively (see green and red curves in Fig. 6). It is impor-
tant to note that even in the hysteretic regime the wave
patterns appeared to be stable against surface perturba-
tions: during the experimentation process, after record-
ing a particular pattern, irregular manual stirring was
applied in the uppermost fluid layer (with penetration
depth of roughly1 cm), and afterwards, in all observed
cases, the same wave pattern recovered within ca. 10
minutes of time. Despite the hysteresis, it is to be re-
marked, that the critical rotation rateΩcrit ≈ 3 rpm of
the onset of baroclinic instability and the first – critical
– wave number (mcrit = 2) appeared to be unaffected
by the initial conditions. We also note that all the baro-
clinic waves observed (except for a single transient case,
encountered in one of the EULAG simulations, to be
discussed later) were of thesteady wavetype, i.e. the
large-scale structure of the propagating patterns did not
change considerably throughout the the quasi-stationary
parts of the (either experimental or numerical) runs.

To model the hysteretic behavior numerically, the
cylFloit and LESOCC2 runs imitated the experimental
process via initiating the simulation of a given parame-
ter point from the final flow state of the preceding sim-
ulation. By sequentially increasing (decreasing) the ro-
tation rate in this manner, “spin-up” (“spin-down”) se-
ries were generated, as discussed in the previous section.
Besides, the stability of the obtained state with respect
to perturbed initial conditions (the analogue of manual
surface stirring in the laboratory) was analyzed in the
HiFlow3 simulations (the methods of perturbation are
discussed in subsection 2.2.4).

The dominant wave numbers of the cylFloit runs are
shown in Fig. 6b. The green and red curves represent the

spin-up and spin-down series, respectively. Compared to
the experimental data of panel a), the cylFloit spin-up se-
ries exhibited switches fromm = 2 to m = 3 and from
m = 3 tom = 4 at lower rotation rates. Nevertheless, it
can be stated, that throughout the whole series, the sim-
ulations always converged to one of the experimentally
observed equilibria, i.e. the cylFloit spin-up curve is en-
veloped by the experimental hysteresis regime (repeated
in Fig. 6b with dash-dotted lines). The spin-down series,
on the other hand, precisely reproduced the laboratory
results, including the appropriate estimation of the criti-
cal rotation rateΩcrit and critical unstable modemcrit.

The dominant wave numbers obtained in an earlier
experimental series (that was conducted in 2011 and had
been used for the validation of the cylFloit and INCA
models, see the paper of BORCHERT et al. (2014) in
the present issue) are also shown in Fig. 6a in the
form of a blue curve. Each of these laboratory runs
had been initiated withzero angular velocityuntil the
axially symmetric basic state of “sideways convection”
developed. Afterwards, the rotation of the tank was
accelerated so that the final rotation rate was reached
within a spin-up period of ca. 20 s. In these experiments
the wave patterns were observed – and remained stable –
for extremely long times ranging from 6 to 12 hours after
the onset of rotation. This laboratory procedure was
also simulated with cylFloit (using the ‘from scratch’
strategy described in the ‘Numerical methods’ section),
and the resulting data points are shown as the blue
curve of Fig. 6b. It can be stated that both in the
experiments and in the simulations, even though the
system was initiated “from scratch” before each run, the
flow occasionally converged to the states of the upper
(spin-down) branch. This observation underlines the
conclusion that the hysteretic regime indeed involves
two distinct equilibrium states and does not arise merely
due to some slow transient phenomenon.

The experimental and numerical results for the four
benchmark parameter points (for which the flow states
were computed by all the numerical models) are sum-
marized in Table 3. These points were selected to rep-
resent the three dynamical regimes observed in the lab-
oratory: the transition zone from axisymmetric (m = 0)
to wave flow state (#1), the hysteretic regime (#2 and
#3), and the regime of higher rotation rates, where –
at least in terms of the dominant wave numbers – the
two branches have recombined (#4). The arrows (↑ and
↓) mark the spin-up and spin-down series, if applicable.
In the case of the LESOCC2 runs, the flow states were
also computed at intermediate data points (at rotation
ratesΩ = 5.5; 8.0; 10.5; 20.0 rpm), to enable the same
sequential simulation process as described for cylFloit.
The data from these points, however, were not evaluated
in the present study.

In the case of the HiFlow3 simulations, letters “u”
and “p” denote the unperturbed and perturbed states ob-
tained for the given rotation rate, respectively. In the
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notation Ω [rpm] experiment cylFloit EULAG HiFlow3 INCA LESOCC2
#1 3± 0.2 0− 2(↑↓) 0(↑↓) 2− 3I 0(u, p) 2 0(↑↓)

#2 7± 0.1 3(↑); 4(↓) 3(↑); 4(↓) 3 3(u); 2(p) 4 2(↑); 3(↓)

#3 9± 0.1 3(↑); 4(↓) 3(↑); 4(↓) 4 2(u); 3(p) 4 3(↑); 4(↓)

#4 17± 0.1 4(↑↓) 4(↑↓) 4 4(u, p) 4 3(↑); 4(↓)

Table 3: Dominant wave numbers of the “benchmark” data points, as obtained in the experiment and by the numerical models. Arrows↑
and↓ mark spin-up and spin-down initial conditions, if applicable. u marks the unperturbed andp denotes the perturbed initiation states
in the HiFlow3 simulations. Note, that∆T = 8 K was set constant for all the measurements, therefore the rotation rateΩ was the only
variable “environmental” parameter.

“p”-runs additional azimuthal random perturbation was
added to the initial condition (described in the previous
section). In the cases of #2 and #3, the perturbed ini-
tial state led to a solution different from the unperturbed
case, but no such behavior was found for #1 and #4. This
is in qualitative agreement with the laboratory results,
since all of these metastable states were found within
the hysteretic regime (metastable, since small temper-
ature perturbations confined to the surface region were
able to change the dominant wave number in these nu-
merical runs). It is to be noted, that the LESOCC2 and
HiFlow3 models exhibitedm = 2 at #2 in their spin-up
and perturbed series, respectively, besides the (experi-
mentally verified)m = 3 mode.

EULAG and INCA always converged to one of
the experimentally detected states within the regime of
baroclinic instability (#2 to #4). For the data point #1
close to the critical transition point, INCA foundm = 2,
and EULAG showed a dispersive transient pattern with
fluctuating amplitudes atm = 2 andm = 3 (denoted
with 2 − 3I in Table 3), see alsoVON LARCHER and
DÖRNBRACK (2014) in the present issue. These may
be the same type of “weak waves” that have already
been observed in the BTU CS baroclinic annulus around
the critical parameter region of the onset of baroclinic
instability (SEELIG et al., 2012; VINCZE et al., 2014).
These findings are seemingly in contradiction to the ax-
ially symmetric solutions of the rest of the models. It is
important to remark, however, that the exact experimen-
tal value ofΩcrit is hard to determine. AtΩ = 2.26 rpm
the flow in the laboratory tank was clearly axially sym-
metric, and at the next measured data point (Ω = 3.19
rpm) the first baroclinic wave pattern withmcrit = 2
has already emerged. Moreover, in the aforementioned
2011 experimental series, axially symmetric (m = 0)
state was reported atΩ = 2.99 rpm. Therefore the tran-
sition fromm = 0 to mcrit = 2 appears to take place at
3 rpm< Ωcrit < 3.19 rpm, a rather narrow range.

As a general remark, it is worth to note that when
a simulation does not uncover the same equilibrium
as the experiment, it does not necessarily indicate a
shortcoming of the simulation. Even when a variety
of initialization procedures are used, the existence of
multiple equilibria may not be uncovered in all cases.
Also, different initialization procedures may uncover
different solutions. Thus, the spin-up and spin-down

simulations are more useful in this regard, i.e. they are a
more robust way of uncovering the multiple equilibria.

3.1.3 Spatial harmonics and small-scale structure

Besides the dominant wave numbers, the aforemen-
tioned “harmonics” are also of relevance, as they pro-
vide a certain spectral fingerprint of the studied patterns.
The wave numbers corresponding to all significant peaks
of the time-averaged spatial spectra are shown in Figs.
7a and b for the laboratory experiments and for the
cylFloit runs, respectively. In both panels, red crosses
mark the spin-up and black circles mark the spin-down
series. In each case, a peak was considered significant if
its time-averaged spatial Fourier amplitude〈Am〉 was
larger thanĀ + 3σA, whereĀ and σA are the mean
amplitude and standard deviation of the whole time-
averaged spectrum, respectively.

Comparing the two panels of Fig. 7, it is visible that
in the laboratory experiments the presence of the har-
monics was more pronounced than in the simulations.
For example, the dominant wave modem = 4 was al-
ways accompanied by a significantm = 8 in the labora-
tory (cf. Fig. 5), whereas it exhibited insignificant am-
plitudes in some of the cylFloit runs. Also, the harmonic
m = 9 regularly appeared alongside modem = 3 in
the experimental data, whereas in the cylFloit results it
showed up in one single case only. This mismatch might
indicate that the formation of some of the eddies in the
annulus (that yield the presence of these harmonics) can
be caused by surface effects (e.g. wind stress, nonzero
heat flux, etc.) that are not included in the numerical
models.

3.2 Average temperature variance

As a measure of the overall spatial thermal variability in
the azimuthal direction, the (spatial) standard deviation
of the mid-radius temperature profile was determined at
each time instant. Next, the (temporal) average of these
values – denoted bȳσ – was calculated for the whole
quasi-stationary part of the given (either experimental
or numerical) run. The obtained values are shown in
Fig. 8 as a function of the rotation rateΩ. In the graphs
corresponding to those numerical simulations, where the
onset of baroclinic instability was captured, this “phase
transition” manifests itself in the form of a marked jump
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Figure 7: The distribution of significant harmonic modes in the
wave number space, as a function of rotation rateΩ, as found in
the laboratory experiments (a) and in the cylFloit simulations (b).

in σ̄. Note, that EULAG and INCA found dominant
modes of non-zerom already at the benchmark point
#1, therefore in their graphs no such jump is present.
Since the basic state is axially symmetric and the ana-
lyzed data were extracted from a circular contour of a
constant radiusrmid, it is trivial that the numerical mod-
els give practically zero variance in this regime. How-
ever, due to random temperature fluctuations, the labo-
ratory experiments (green and red curves for the spin-
up and spin-down series, respectively) showed consid-
erably larger (yet, minimum) values ofσ̄ in this regime.

The qualitative behavior of the spin-down experi-
mental series in terms of̄σ is well captured by the corre-
sponding cylFloit runs (blue curve). In both curves pro-
nounced local maxima can be observed atΩ = 5 rpm,
followed by local minima atΩ = 6 rpm. Both in the
experiments and the cylFloit runs, this parameter point
coincides with the transition from dominant wave num-
berm = 4 to m = 3 (as we now discuss the spin-down
sequence). This may imply that them = 3 patterns gen-
erally have larger amplitudes in the mid-radius section
than theirm = 4 counterparts. Thus, the reorganization
of the surface pattern overrides the general decreasing
trend ofσ̄ towards smaller values ofΩ. A similar jump-
wise increment is present in the experimental spin-up
series as well (green curve). In this case, the transition

happened atΩ = 7 rpm, which, again, coincides with
the transition tom = 3, this time from the preceding
m = 2 state (cf. Fig. 6a). In this sequence also a
similarly sharp drop of̄σ can be observed atΩ = 10
rpm, which isnot accompanied with the change of the
dominant wave numberm = 3. However, as it will be
demonstrated in the next subsection, this decrease coin-
cides with a similarly sharp change in the drift rates of
the baroclinic waves, thus implying a certain state tran-
sition, even though not in terms ofm.

Despite the qualitative similarity, the cylFloit and
INCA runs (blue, magenta and orange curves) system-
atically overestimatēσ by around a factor of2. This,
however, may well be the consequence of the fact that
the temperature fields of these models are extracted from
the height level ofz = 10 cm (whereasD = 13.5 cm).
The plotted data from LESOCC2 and EULAG (brown
and black data points) on the other hand were extracted
from the uppermost (surface) grid level. In terms ofσ̄,
the former is in fairly good agreement with the experi-
mental data, whereas the latter stays practically constant
(exhibiting a minor decreasing trend only), and signifi-
cantly overestimates the variance.

3.3 Drift rates

Next, the drift rates of the dominant wave modes were
determined and analyzed. The discrete Fourier trans-
form, described in the “Methods” section, yielded the
phase shiftsφm for each time instant. Thus, the quantity
φm(t)/m could be used as a measure of the “azimuthal
distance” travelled by the given component with wave
numberm sincet = 0. Such time series are shown for
the two largest Fourier components (m = 3 andm = 6)
in the explanatory figure Fig. 9b obtained in a laboratory
experiment (Ω = 4.2 rpm, spin-down series), alongside
with amplitudesAm(t) of the first six Fourier compo-
nents in Fig. 9a. For better visualization of the evolution
of φm(t)/m in the bottom panel, we extended the peri-
odical [0; 2π] range to[0;+∞) (so that the positive in-
crements correspond to counter-clockwise propagation).

The drift rate cm(t) (angular velocity) of a given
mode m could thus be obtained as the slope of the
corresponding graph at time instantt, since:

1

m

∂φm(t)

∂t
≡ cm(t), (3.1)

therefore linear fits to the quasi-stationary part of the
propagation could be used to determinecm(t).

It is important to mention, that, within a given ex-
periment all the Fourier components of significant am-
plitudes propagated at the same drift rate, i.e. no wave
dispersion was present. Consequently, although the flow
pattern drifted around the annulus, its form remained
unchanged. We note, that in an earlier experimental
series carried out in the same set-up with the addition
of sloping bottom topography, marked wave dispersion
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Figure 8: The average thermal variabilitȳσ as the function of rotation rateΩ. The numbers denote the ‘benchmark’ parameter points of
Table 3.

Figure 9: Temporal development of the Fourier amplitudes (a)
and “azimuthal distances” (b) of wave modesm = 2, . . . , 6 in a
laboratory experiment (Ω = 4.2 rpm, spin-down series). Note, that
the modes of the dominant wave numberm = 3 and its “slave
pattern”m = 6 – that has the largest amplitude – exhibit regular,
uniform drift, whereas the small-amplitude modes provide bogus
‘non-physical’ signals in the bottom panel.

was observed. In that case, the stable baroclinic wave
patterns emerged in the form of so-called resonant triads
(V INCZE et al., 2014). Moreover, PFEFFERand FOWLIS
(1968) also found dispersion in their flat bottom exper-
iment, and HARLANDER et al. (2011) reported disper-
sion in the wave transition region of theTa−RoT dia-
gram at lower∆T .

We compared the drift rates of the wave mode of the
largest average amplitude〈Am(t)〉 for each run. The
drift rates obtained for the laboratory experiments are
presented in Fig. 10a, both for the spin-up (green) and

spin-down (red) series, as a function of rotation rateΩ.
An overall decreasing trend can be observed in agree-
ment with the expectations based on quasi-geostrophic
theory. Due to thermal wind balance, the velocity of the
zonal background flow is expected to scale as:

U ∝ αgD∆T

2Ω(b− a)
. (3.2)

In the linear theory of EADY (1949) the baroclinic
waves themselves also propagate at the velocity of the
mean flow, thus acm ∝ Ω−1 scaling is to be ex-
pected. Accordingly, FEIN (1973) found in baroclinic
annulus experiments the general power-law formcm =
B(α∆T/Ω)ζ . In the case of our experiments (the
spin-down series was evaluated), these parameters were
found to beB = 4.4±0.15 andζ = 1.17±0.04. The fit
is shown in Fig. 10c – the repetition of panel a) with log-
arithmic scales – as a dashed line, and aζ = 1 slope pro-
portional to the thermal wind speed is also plotted (thick
grey curve). It is to be noted, that for a free-surface an-
nulus Fein obtainedζ = 0.88±0.07 (the values ofB are
not suitable for direct comparison between different set-
ups as they depend on the actual geometrical parameters
of the tanks used).

Fein also demonstrated that both in terms of factor
B and exponentζ the experiments with free surface and
rigid lid exhibit significantly different scaling properties,
leading to an order-of-magnitude difference between
their respective drift rates (the waves in the free surface
set-up being the faster). This observation underlines the
extreme sensitivity of the studied system to the upper
boundary condition, and thus gives a broader context to
our comparisons with the numerical results, which now
follows.

The cm values, obtained from the cylFloit data are
shown with magenta and blue curves in Fig. 10a and
c, representing the drift rates in the spin-up and spin-
down series, respectively. Also, the results of the “from
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Figure 10: Drift rates of the dominant wave modes as functions of rotation rateΩ. In panel (a), the experimental spin-up (green), spin-down
(red) sequences are presented, alongside the spin-up (magenta), spin-down (blue) and “from scratch” (dark green) series. In panel (b) the
drift rates from other numerical models are shown. For a better comparison, three curves of panel (a) are repeated here with dotted lines,
using their original color coding. The data from panels a) and b) are repeated with double logarithmic scales in panels c)and d). The
power-law fit of the (spin-down) experimental data points (dashed line) andζ = 1 curves (grey) obtained via thermal wind balance are also
shown.

scratch” series (always initiated from the stablem = 0
state) are plotted with a blue graph. Figure 10b and d
show the drift rates found in the LESOCC2 (spin-up
and spin-down), INCA and EULAG simulations. The
general decreasing trend of drift rates was captured by
the investigated models, and the drift rates of cylFloit,
INCA and LESOCC2 are in fairly good agreement with
each other, yet, neither the experimentally obtained, nor
the thermal wind-type scaling was reproduced by them.
The drift rates are generally overestimated compared to
the laboratory findings (the experimental curves and the
cylFloit “from scratch” points are repeated in 10b and d
in the form of a dotted curves, and aζ = 1 power-law is
also given in panel d). The EULAG simulations however
– aside of theΩ = 3 rpm case, where the wave pattern
appeared rather irregular – were in good agreement with
the experiments in terms of drift rates. The possible
reasons for these differences will be discussed in the
“Summary and conclusions” section.

Besides the general decreasing trend ofcm, the most
marked feature in the experimental spin-up sequence

(green curves in 10a and c) is a sharp drop around
Ω = 10 rpm, a data point which lies well within the
regime of dominant wave numberm = 3 (cf. Fig. 6a).
This transition was also observed in terms of the aver-
age thermal variancēσ, as mentioned in the previous
subsection.

It is to be noted, that in the experimental procedure,
the discussed drop coincided with an interruption of
the measurement sequence. The spin-up measurements
were conducted in four campaigns on subsequent days.
The measurement protocol in such cases was the follow-
ing: on a new measurement day, the spin-up process was
repeated from an initial axially symmetric state with a
fully established sideways convection (Ω ≈ 2 rpm), up
to the preceding data point (in this case toΩ = 9.1 rpm),
which was then left undisturbed for a long relaxation
time (here 4 hours and 40 minutes). Afterwards, the
standard spin-up procedure – described in the “Meth-
ods” section – was conducted to approach the new pa-
rameter point (in this case:Ω = 10.1 rpm). Interest-
ingly, this was the single case where the re-initiation
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Figure 11: Two thermographic experimental snapshots ofm = 3
surface temperature patterns. A fastly propagating type (a), observed
at rotation rateΩ = 4.2 rpm (see also the corresponding propagation
plot in Fig. 9b), and (b) the slower type, observed after the “topolog-
ical transition” (Ω = 10.1 rpm).

of the measurement sequence coincided with such an
abrupt change. Similar interruptions and re-initiations
occurred between the data points ofΩ = 4 rpm and
Ω = 5 rpm and betweenΩ = 15 rpm andΩ = 16 rpm
(and also, betweenΩ = 15 rpm andΩ = 14 rpm in the
spin-down series), without any significant effect on the
drift rates.

As mentioned above, the observed phenomenon was
not accompanied with the change of the dominant wave
number, yet, a certaintopological transitionof the sur-
face temperature field was detected. Fig. 11 shows two
typical snapshots, transformed to polar coordinates. The
pattern characteristic to the first, “classic” type ofm = 3
waves (observed in the range of 7.1 rpm≤ Ω ≤ 9.1
rpm) is presented in panel a), whereas the structure of
the slowly propagating type (10.1 rpm≤ Ω ≤ 15.9 rpm)
is visible in panel b). One can observe, that the neigh-
boring cold eddies that are separated by the meandering
warm jet in case a), are connected by cold filaments in
case b) (e.g. the one in the white rectangle). This implies
that the widely used experimental classification of baro-
clinic waves in a rotating annulus – that is based on the
dominant wave number only – is rather incomplete: al-
though the values ofΩ and∆T are within a regime that
is (given a certain initialization method, either spin-up
or spin-down) characterized by a single dominant wave
numberm, yet, evenwithin this regime, considerable
jump-wise state transitions may occur (in terms of pat-
tern topology and also in terms of drift rate) and clearly
different dynamical states may develop that essentially
have thesamedominant zonal wave number.

Similarly to the experimental data, a pronounced
hysteresis appears at rotation ratesΩ < 13 rpm in the
cylFloit results (Fig. 10a). In this case theΩ-range of

the hysteretic regime clearly agrees with the one found
in terms of the dominant wave numbers (cf. Fig. 6b).
The interval between the intersection points of the spin-
up and spin-down curves (Ω = 6 rpm andΩ = 12 rpm)
can therefore be described as the regime wherem = 4 is
the dominant mode of the (lower) spin-down branchand
the (upper) spin-down branch exhibitsm = 3. Thus, a
manifest correlation is present: at a givenΩ the waves
of three-fold symmetry propagate faster than the four-
fold-symmetric patterns. This conclusion is confirmed
by the behavior observed in the from-scratch-initiated
simulations of the dark green curve (see also the blue
curve of Fig. 6b): in the hysteretic regime, when the
system switches from one branch to the other in terms
of m, it does so in the drift rate as well. Note, that below
Ω = 10.1 rpm (where the aforementioned topological
re-organization and sudden drop in the drift rates took
place), also in the experimental data of Fig. 10a, the
intersection point of the two branches coincides with
the onset of them = 3 mode in the spin-up sequence,
whereas the spin-down branch maintains the dominant
wave number ofm = 4. In other words: the “first” type
of m = 3 patterns (seen in Fig. 11a) drifts faster than
the baroclinic waves ofm = 4 at a given rotation rateΩ.

3.4 Empirical Orthogonal Functions

To properly describe the temperature variance stored in
co-existent spatio-temporal patterns in the annulus we
turned to the method of Empirical Orthogonal Functions
(EOFs) (HARLANDER et al., 2014). This approach is
generally accepted as a powerful tool for data compres-
sion and dimensionality reduction: it is able to find the
spatial patterns of variability, their time variation, and
provides a measure for the “relevance” of each pattern,
and thus describe the complex behavior of the system,
often in terms of surprisingly few modes (VON STORCH
and NAVARRA , 1999). It is to be noted, however, that
in general these EOF modes do not necessarily corre-
spond to individual dynamical eigenmodes of the system
(MONAHAN et al., 2009).

EOF analysis has been extensively used in recent
works (HARLANDER et al., 2011; BORCHERT et al.,
2014) for two-dimensional temperature and velocity
fields in the particular setup at BTU CS. Here, how-
ever, as we restricted our studies to the temperature pro-
files along the circular contour at mid-radius, the one-
dimensional EOFs were determined. Organizing the
surface temperature dataT (θ, t) at given time instants
as column vectors (state vectors) and combining them
in temporal order, yields the so-called data matrixX,
whose number of rows and columns correspond to that
of the considered spatial and temporal points, respec-
tively. In the present one-dimensional case a transparent
visual representation ofXT can be obtained in the form
of a space-time or Hovmöller plot, e.g. the one shown in
Fig. 12a (corresponding to anm = 3 baroclinic wave).
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Figure 12: A typical thermografic Hovmöller (space-time) plot of an experimental run at dominant wavenumberm = 3 (a), and the first
two corresponding EOF variance pattern pairs (b and c). The corresponding relative variances of EOFs 1 to 4 werep1 = 0.29, p2 = 0.27,
p3 = 0.082 andp4 = 0.073, respectively.

In our EOF analyses the selected matricesX con-
sisted of the data from the last 100 time instants of the
given (either experimental or numerical) run; a time in-
terval that always lied well within the quasi-stationary
part of the investigated process. In space, the experimen-
tal data were linearly interpolated onto an azimuthally
equidistant grid of 100 cells, whereas the numerical data
were transformed similarly to 50 grid points of uniform
spacing. The entries ofX were then obtained by sub-
tracting the mean value of each corresponding row (i.e.
temperature time series at a given spatial location). The
covariance matrixS is given by:

S =
1

n− 1
XX

T , (3.3)

wheren = 100 is the number of time instants con-
sidered. The eigenvectorsek (i.e. the EOFs them-
selves) and the corresponding eigenvaluesξk of S were
computed. The EOF indexk = 1, 2, 3, . . . is given
by organizing the eigenvalues in decreasing order as:
ξ1 ≥ ξ2 ≥ ξ3 ≥ . . . . The percentage contributionpk
of each patternek to the total variance captured by the
EOFs can then be expressed as:pk = ξk/

∑

i ξi. As a
demonstration, the first four EOF patterns are shown in
Fig. 12b, corresponding to the same experiment as the
Hovmöller plot of panel a).

3.4.1 Variance distribution

The distribution of percentage contributionspk of the
EOFs (a monotonically decreasing function of indexk)
was analyzed to quantify the overall complexity of the
investigated spatio-temporal patterns. Typical “variabil-
ity density functions” are presented in Fig. 13a, as
obtained from our experiments (black, red and green
curves) and the simulations with different models (see

also the legend). It is to be emphasized that this figure
serves a purely explanatory purpose: to help the reader
to better understand the role of the parameters used to
quantify the distribution properties. Therefore a large
variety of cases at different rotation rates are shown,
which are therefore not meant for model comparison.
Yet, some common features can be observed: visibly, in
a large domain ofk, the experimental data points exhibit
a power-law type scaling – indicating the importance of
higher EOF indices – that is followed by exponential
cut-off. A qualitatively similar behavior can be observed
in the numerical data as well, however, both the “power-
law part” and the “cut-off part” appear to have different
quantitative properties than the ones of the experimental
results.

To find appropriate measures of these properties,
firstly the cumulative density functionsI(k) =

∑k
i=1 pk

were calculated for each experimental and numerical
run. Fig. 13b shows theI(k) curves corresponding to
the cases plotted in panel a), with the same color cod-
ing. The heuristic empirical form

I(k) = 1− C
e−αk

kβ
(3.4)

has proven to be a strikingly accurate parametrization
for every run: typically, the asymptotic standard errors
were below3% for all three free parametersα, β and
C. Note, that the values of these parameters for the
exemplary cases of Fig. 13b are listed in the legend.
In panels c) and d) the density functions and cumulative
density functions of all the models (and the experiment)
are given, all for a single parameter pointΩ ≈ 9 rpm.
For all models, the values ofα, β andC were evaluated
for each simulatedΩ.

Let us now compare the fitted parametersβ andα
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Figure 13: Typical variability density functions obtained from the experiments and numerical models (a). (See legends for the model
types and rotation rates). Their corresponding cumulativedensity functions are shown in panel (b) with the same color coding. The fitted
parameter values ofα, β andC are also shown. Panels c) and d) show the density functions and cumulative density functions, respectively,
for all the models and the experiment for theΩ = 9 rpm (spin-up) case.

versus rotation rateΩ in Figs. 14a and b, respectively.
In the laboratory experiments (red and green curves in
both panels) the values ofβ scatter in the range of
β ∈ (0.3; 1.1), while α exhibits small positive values
α ∈ (0.01; 0.1). These imply that the saturation of the
cumulative density function is slow, a considerable part
of the variance is stored in the EOFs of largerk. As the
exponential factor is such a slowly varying function (due
to the smallα), the behavior observed in the experimen-
tal density functions of Fig. 13a approximately follows
a power-law scaling in the form ofk−γ ≡ k−β−1 with
1.3 < γ < 2.1. Such values ofγ are typical for the prob-
ability density functions of long-range correlated pro-
cesses. As yet another measure of complexity, it is to be
mentioned thatk = 6− 18 different EOFs were needed
to cover90% (I(k) = 0.9) of the total variance in the ex-
perimental distributions (like the first three graphs listed
in Fig. 13b).

The exponentβ was also typically found within the
same0 < β < 1 regime in the simulations conducted by
EULAG, HiFlow3 and LESOCC2 (see the black, gray
and turquoise graphs in Figs.14a, respectively). This
implies that the distribution of variance in these three
models behave realistically concerning the smallerk-
regime, which practically corresponds to the large-scale
features of the flow. Also in terms ofα, the EULAG
results scattered perfectly within the same interval as

the experiments, meaning that the “tail” of the distri-
bution scales correctly. However, the values of param-
eterC were an order of magnitude smaller for EULAG
(C ∈ (0.025; 0.12)) than for all the other cases, either
experimental or numerical, whereC ∈ (0.42; 1.17) was
found within the baroclinic unstable regime. This is due
to the interesting fact that in these simulations – despite
of their close-to-perfect scaling properties – the very first
EOF alone was responsible for90 − 96% of the total
variance, i.e.p1 ∈ (0.9; 0.96), a property that can be
observed on the turquoise curve of Fig. 13b too. For
HiFlow3 and LESOCC2, on the other hand, parameterα
appeared to be 2-6 times larger than in the experiments
(Fig. 14b), meaning that the variability of larger indices
k is suppressed by a marked exponential cut-off, thus
most of the variance is stored in the large-scale patterns.

The values of exponentbeta were found significantly
larger in the INCA and cylFloit model runs than in the
case of the laboratory experiments (see orange, blue and
magenta graphs in Fig. 14a). Typically, the cases where
β > 1 holds, correspond toα < 0, as visualized in the
correlation plot of Fig. 14c. This relation suggests that
at smaller values of indexk a sharp “fast” power law
characterizes the dominant, large-scale part of the distri-
bution. This scaling, however, is confined only to this
regime: in itself it would mean a too sharp cut-off at
larger indicesk. Thus, for an appropriate parametriza-
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Figure 14: The fitted parametersβ andα of the cumulative density
functions of (3.4) versus rotation rateΩ: panels a) and b), respec-
tively, and the correlation plot of the two parameters (c). The color
coding is the same for all panels.

tion, a negative value ofα is needed to compensate this
effect to keep the variances at higher EOF indices finite.

Regarding the cylFloit simulations the data points of
the spin-up and spin-down series are plotted separately,
with magenta and blue symbols in all panels of Fig. 14,
respectively. In panel a) the marked hysteretic behavior
of parameterβ can be observed. This behavior is in
manifest connection with the dominant wave numbers
(cf. Fig. 6b): apparently,m = 4 states are characterized
by largerβ thanm = 3 states. This implies that in
the m = 4-dominated states the “scale separation” is
more pronounced: a larger fraction of the total variance
is stored in the first few EOF modes than in them = 3
cases.

In the spin-up and spin-down sequences of the lab-
oratory experiments no such connection was found be-
tween wave numbers and the parameters ofI(k), how-
ever, a significant jump ofβ at rotation rateΩ = 10.1
rpm is visible in the spin-up curve (green graph in
Fig. 14a), that corresponds to the topological transition
within them = 3 regime, described in the previous sec-
tion.

3.4.2 Pattern correlations

Besides the distributions of the eigenvalues of covari-
ance matrixS, the eigenvectorsek, i.e. the variance
patterns themselves were also compared. The applied
method was similar to the one used in BORCHERTet al.
(2014) for two-dimensional EOFs. Firstly, the obtained
EOF patterns of indicesk and l from the experiment
and a given numerical model were linearly interpolated
onto the same equidistant grid of 100 cells. These func-
tions are marked by:f exp

k (θ) andfmod
l (θ), respectively

(θ ∈ (0; 2π]). Their correlation coefficient is then calcu-
lated as:

Ckl =
〈f exp

k (θ)fmod
l (θ + ϕ)〉 − 〈f exp

k (θ)〉〈fmod
l (θ + ϕ)〉

σ(f exp
k (θ))σ(fmod

l (θ + ϕ))
,

(3.5)
where〈·〉 marks the azimuthal mean,σ(·) denotes the
standard deviation andϕ is the “offset angle” which
maximizesCkl. This sliding transformation is required,
since the azimuthal orientation of EOFs in the vari-
ous models (and experimental runs) are generally differ-
ent. In this transformation periodic boundary conditions
were applied, i.e. the values for whichθ+ϕ > 2π were
actually mapped onto the interval(0;ϕ).

The valuesCkl were calculated for the first 10 EOFs
(both numerical and experimental) and were combined
into 10 × 10 matrices. The structures of these matrices
were analyzed. Here, we present a few typical exem-
plary cases to yield a qualitative insight to the nature of
the correlation properties of one-dimensional EOFs. In
Fig. 15 the correlation plots for the benchmark case#4
(Ω ≈ 17 rpm) are presented. This case was selected,
since here – already out of the hysteretic regime – all the
models foundm = 4 as dominant mode, in agreement
with the experiments. For a better understanding of the
comparisons to follow, in panel a) we present the corre-
lation plot of the EOFs of the given experiment with one
another (hence,f exp

i ≡ fmod
i using the above notation).

Trivially, in this caseCii = 1 holds for the diagonal en-
tries, and the matrix is symmetric. Though the EOFs are,
by definition, orthogonal, yet, the aforementioned slid-
ing transformation leads to rather marked correlations,
since EOF1 and EOF2 (and, similarly EOF3 and EOF4,
etc.) are rather similar, but shifted in azimuthal direc-
tion (see also Fig. 12b and c). Such EOF pairs account
for the baroclinic wave propagation, analogously to the
relation of sine and cosine terms in the Fourier decom-
position of propagating waves.

Panels b)-f) show the correlation matrices obtained
from the comparison of the experimental set of EOFs
with the EOFs from cylFloit, EULAG, HiFlow3, INCA
and LESOCC2, respectively. The numbers on the hor-
izontal axis represent the indices of the experimental
variance patterns, and those on the vertical axis are the
EOF indices of the given numerical model. The indices
and values of the maximum entries in the given matrix
are also marked in the panels. Two main observations
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Figure 15: The cross-correlation matrices obtained in the benchmark case#4 (Ω ≈ 17 rpm). The positions and values of the maximum
entries of the matrices are also given underneath the respective figures.

need to be emphasized. Firstly, the structures of the
matrices are rather similar, implying that the numeri-
cal models produce similar variance patterns. Also, the
aforementioned EOF pairs are clearly visible in the ma-
trices in the form of2×1 and2×2 blocks of closely sim-
ilar correlations. The second main observation is that,
despite of the similarity of the matrices, none of them
has diagonal structure as in panel a). Thus, the various
EOF patterns are ranked differently.

The latter statement is seemingly in contrast with the
findings of BORCHERTet al. (2014), who found correla-
tion coeffitiens above0.9 by comparing their EOFs (ob-
tained using the cylFloit and INCA codes) to the lab-
oratory EOFs of thesameindex. However, there the
full two-dimensional surface temperature patterns were
taken. As a test of consistency, we applied our method-
ology to the very same experimental records from year
2011 and the same (“from-scratch” initiated) cylFloit
runs studied in BORCHERT et al. (2014) to obtain the
correlation coefficients for the one-dimensional EOFs.
The resulting correlation matrix is shown in Fig. 16a.
Apparently, the obtained structure is quite similar to
those seen in Fig. 15b-f, and lacks large values in the
diagonal. However, the entries in the2 × 2 blocks in
he vicinity of the diagonal at lower left are indeed large,
with a maximum ofC31 = 0.97. The similarities and
differences of these patterns can be visually evaluated
in Fig. 16b and c, where EOFs 1 and 3 are plotted for

the experimental and the numerical case, respectively.
One can see, that in the experimental case EOF1 exhibits
wave numberm = 6 (and so does its shifted pair EOF2,
not shown here) and the dominant baroclinic wave num-
berm = 3 appears in the EOF3 for the first time, in con-
trast to the typical numerical results. Thus, the numer-
ical models have a tendency to underestimate the vari-
ance stored in the smaller scales.

It can be stated that the one-dimensional data ex-
tracted from the surface temperature field at mid-radius
rmid are generally more sensitive to smaller-scale dif-
ferences than the full two-dimensional patterns, since
– as discussed above – in the two-dimensional case no
such “EOF swap” occurs between numerics and exper-
iment. The mid-radius temperature profiles are appar-
ently largely effected by the variance stored in the har-
monics of the dominant baroclinic wave mode, related
to the structure and dynamics of the cold eddies in the
lobes of baroclinic waves. The fact that the numerical
models are apparently not able to resolve these phenom-
ena implies that they may well be related to boundary
layer effects or even “wind” stress above the free sur-
face of the laboratory tank, which are clearly out of the
scope of the investigated numerical models.

Also, it is to be noted, that in an annulus with an ex-
act rotational invariance the EOFs must be sinusoidal,
i.e. each would project on a single azimuthal wave num-
ber only, as shown by ACHATZ and SCHMITZ (1997).
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Figure 16: The correlation matrix of the one-dimensional EOFs, obtained from the numerical and experimental data of test case #7 of
BORCHERTet al. (2014), and the value of the maximum entry (a). EOFs 1 and 3 of the experimental (a) and numerical (b) case. Note the
“swap” between the indices and wave patterns of the two cases.

The fact that the typical EOFs of the experiment can in
many cases visibly be decomposed to at least two wave
numbers (as the ones in Fig. 12b and Fig. 16b) indi-
cates a violation of rotational symmetry and nonlinear
dynamics. In the azimuthally invariant numerical mod-
els (as cylFloit), however, the EOF patterns were indeed
found to be nearly sinusoidal (see e.g. Fig. 16c). Their
slight imperfection is merely a consequence of the finite
length of the time series considered.

4 Summary and conclusions

In this work we have critically compared various exper-
imentally and numerically obtained characteristic prop-
erties of baroclinic instability in a differentially heated
rotating annulus. Our systematic comparison of five
different numerical models to laboratory experiments
(“benchmarking”) was largely motivated by the general
need to validate numerical models and procedures to be
used for modeling large-scale atmospheric flows.

Two series of laboratory measurements were per-
formed: the “spin-up” and “spin-down” sequences. Be-
tween each measurement only rotation rateΩ was ad-
justed, while the radial temperature difference∆T ≈
8 K remained constant. The two sequences enabled
us to scan through the investigated parameter range
with different initial conditions, and thus access multi-
ple equilibrium regimes. In agreement with earlier re-
sults (MILLER and BUTLER, 1991; SITTE and EGBERS,
2000; VON LARCHER et al., 2005) a considerable hys-
teresis was found in terms of the dominant azimuthal
wave numbersm of the baroclinic waves.

It is well established since the works of JAMES et al.
(1981) and HIGNETT et al. (1985) in the 1980s, that
in terms ofm, the development of baroclinic waves in
baroclinic annuli can be captured in direct numerical
simulations fairly well. In the present work we also

found thatm is indeed a robust indicator of the flow
state, and its obtained values exhibit good agreement
between the experiments and the numerical runs. The
numerical results also support our conclusion that the
hysteretic behavior ofm is to be interpreted as distinct
multiple equilibria and is not just caused by transient
phenomena. This statement is backed by the following
observations: (i) Simulation series conducted with mod-
els cylFloit and LESOCC2 imitated the “spin-up” and
“spin-down” sequences and found hysteresis in terms
of m. A third bunch of simulations, however, were al-
ways initialized from the axially symmetric stable state
(cylFloit “from scratch” sequence). Yet, occasionally
even here, wave numbers characteristic to the “spin-
down” branch were found to develop within a rotation
rate regime where these simulations typically converged
to the states of the “spin-up” branch. (ii) In the HiFlow3

simulations, runs with slightly perturbed initial condi-
tions were also conducted. The only cases where these
temperature disturbances yielded a different dominant
wave numberm than that corresponding to the unper-
turbed runs were at parameter points within the experi-
mentally observed hystereticΩ-regime.

The different routes of releasing the stored poten-
tial energy – as initial conditions – may play impor-
tant roles in the observed hysteretic mode (i.e. domi-
nantm-) selection. If spin-up is applied, the inclina-
tion of the iso-density surfaces increases, making the
flow more “baroclinic unstable”, i.e. the stored potential
energy is transformed into kinetic energy only via en-
hanced baroclinic wave excitation (a very effective way
of energy release). If spin-down is applied, the inclina-
tion of isopycnals decrease, and the unavoidable tran-
sient hydrostatic imbalance opens up the way to other
forms of kinetic energy release as well, via the overturn-
ing background flow (possibly even inertia-gravity wave
excitation, see e.g. the numerical work of RANDRIA -
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MAMPIANINA et al. (2006)). Although these effects are
probably transient, yet, as initial conditions they appear
to play an important role in setting the dominant wave
numberm of the baroclinic wave, which remains steady
for a much longer time than the timescale characteristic
for the reorganization of stratification.

Another important measure of baroclinic wave dy-
namics is the drift ratecm of the dominant wave mode.
In qualitative agreement with the quasigeostrophic Eady
model (VALLIS , 2006), thecm(Ω) relationship was
found to be a decreasing function, roughly following
thecm ∝ Ω−1 dependence set by the thermal wind bal-
ance. It is to be noted, however, that most of the mod-
els (with the exception of EULAG) systematically over-
estimated the wave speeds. This phenomenon may well
be explained by the simulations’ difficulties to resolve
the boundary layer drag at the lateral sidewalls. A simi-
lar observation was described in the study of WILLIAMS
et al. (2010) where a two-layer (lid shear-driven) rotat-
ing baroclinic annulus set-up was investigated both ex-
perimentally and numerically. In their case the simu-
lated drift rates were larger than the measured values by
a factor of 4, due to the model’s neglect of Stewartson
layer drag. Stewartson layers are characteristic for ho-
mogeneous fluids. In our case of relatively strong strati-
fication, however,Pr RoT/Γ

2 ≫ Ek2/3 holds withΓ
being the vertical aspect ratio of the tank (as defined
in Section 2) andEk = ν/(ΩL2) the Ekman num-
ber. In this regime – instead of Stewartson layers – two
boundary layers are found in the vicinity of each lat-
eral sidewall: the larger hydrostatic layer with a char-
acteristic thickness ofδh = D(PrRoT /Γ

2)1/2 and,
closer to the wall, the buoyancy layer whose thickness
is δb = D(νκ/(D3gα∆T ))1/4. These two layers unite
and form the Stewartson layer (withδS = DEk1/3)
if stratification decreases (BARCILON and PEDLOSKY,
1967). For the present caseδh > b − a holds, i.e.
practically the whole measurement cavity lies within the
“hydrostatic” domain. The buoyancy layer, however, is
found to be onlyδb ≈ 1 mm thick, thus it is not resolved
sufficiently by most of the models.

The sensitivity of drift rates to the horizontal grid
spacing was demonstrated with the INCA model. The
phase speeds of baroclinic waves at two different ro-
tation rates – namelyΩ = 4 rpm andΩ = 9.5 rpm
– were determined using two grids in both cases for
comparison. The coarse and fine grids had minimum
cell sizes of∆xmin,(1) = ∆ymin,(1) = 1.5 mm and
∆xmin,(2) = ∆ymin,(2) = 0.5 mm, respectively. The
obtained drift rates were:c(1) = 0.097 rad/s (coarse
grid); c(2) = 0.057 rad/s (fine grid) atΩ = 4 rpm, and
c(1) = 0.025 rad/s (coarse grid);c(2) = 0.023 rad/s (fine
grid) atΩ = 9.5 rpm. Visibly, at the lower rotation rate
(where the phase velocities of baroclinic waves are gen-
erally large) the refinement of the horizontal grid yielded
slower wave propagation almost by a factor of two. In
the case of the higher rotation rate this effect was man-

ifestly smaller – around 10% – in qualitative agreement
with the drag-hypothesis: the drag itself is expected to
be smaller too if the drift itself is slower. Thus, we can
conclude that the grid resolution has marked effect on
the simulated wave speeds, and to get a proper insight
into the flow structure at the vicinity of the lateral side-
walls, one needs to apply grids that properly resolve the
buoyancy layer.

We also found marked connection between the spa-
tial patterns of baroclinic waves and their drift rates,
both experimentally and numerically. The aforemen-
tioned hysteresis that was observed in terms of the dom-
inant wave numberm also manifested itself in the drift
rates. In the cylFloit simulations,m = 3 waves al-
ways propagated faster than theirm = 4 counterparts
at a given rotation rate (within the hystereticΩ-regime).
Similar behavior was noticed in the laboratory experi-
ments too: a certain type of them = 3 wave was found
to be faster than them = 4 waves of the sameΩ. How-
ever, in the laboratory, another type of three-fold sym-
metric (m = 3) pattern appeared as well in the “spin-
up” series, which was found to propagate at an even
smaller speed than them = 4 waves. Here the sur-
face temperature pattern has undergone a “topological”
reorganization: the meandering warm jet that separated
the inner and outer domain in the “fast”m = 3 waves
has disconnected. This transition possibly opens the way
for stronger radial temperature fluxes, therefore this new
configuration may reduce the thermal wind (background
flow) more effectively, yielding slower drift. Applying
the same reasoning for the hysteresis ofm = 4 waves
and the “fast”m = 3 waves, it can be stated that among
these, them = 4 mode exhibits larger radial heat flow.
As far as the general heat flow is considered, RAYER
et al. (1998) showed that the Nusselt numberNu in a
baroclinic annulus exhibits a large drop at the transition
from axisymmetric flow to the regime of regular waves,
where – compared to the abrupt change at the onset of
baroclinic instability – it does not change markedly with
the increasingΩ. This plateau ofNu(Ω) is followed
by another pronounced drop ofNu when the system
reaches higher rotation rates where the waves become
irregular (this state was not studied in the present work).
It is to be noted, that the changes in heat flow that can be
attributed to shape changes of regular baroclinic waves
is rather small compared to the aforementioned changes
between the general flow states. We also remark, that –
as demonstrated in the experiments of FEIN (1973) – the
drift rates are also highly sensitive to the upper boundary
condition, that was not prescribed properly in the model
equations.

The third main focus of our study was the statistical
quantification of the structures of the surface tempera-
ture field and the analysis of their spatio-temporal vari-
ability. As a measure of the overall variability in the sys-
tem, the time averaged temperature varianceσ̄(Ω) taken
along the circular contour at mid radiusrmid served as an
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order parameter that indicates the breaking of the axial
symmetry (and, thus, the onset of baroclinic instability)
with a marked jump at critical rotation rateΩcrit. In-
deed, in the numerical simulations̄σ ≈ 0 was detected
in all cases where no dominant wave mode could be
found (aside for the trivialm = 0), implying the sta-
bility of the axially symmetric basic state. This was
then followed by more than10 times larger variances
at Ω > Ωcrit. However, in the laboratory experiments
the transition was not that apparent: even belowΩcrit

fluctuations appeared on the same order of magnitude as
the σ̄ values of higher rotation rates (though, smaller by
a factor of around0.5). This observation confirms our
previous finding of spontaneous excitation of dispersive
transient wave-like phenomena (coined “weak waves”)
that “blur” the boundary of instability in the parameter
space (VINCZE et al., 2014). This qualitative difference
between numerics and experiments indicates the pres-
ence of non-modal transient growth of small tempera-
ture fluctuations in this sensitive regime (SEELIG et al.,
2012) unavoidable in the laboratory (see also the work
of HOFF et al. (2014) in the present volume). In the
numerical results the temperature variance obtained at a
few centimeters below the surface was found to be sig-
nificantly larger (by a factor of around2) than at the sur-
face. This behavior, however, could not be verified ex-
perimentally with the applied measurement techniques.

In order to analyze smaller scale spatial structures,
we calculated the Fourier spectra of the azimuthal tem-
perature profiles along the circular contour at mid-radius
rmid for all time instants of a given experimental or
numerical run, and their temporal average was consid-
ered as the characteristic spectral “fingerprint” of the in-
vestigated pattern. In the case of anm-fold symmet-
ric baroclinic wave, besides the dominant wave num-
ber, its harmonics also appear in the spectra with finite
amplitudes, as already demonstrated by JAMES et al.
(1981). The amplitudes and the significance of the spec-
tral peaks provide a measure of the importance of the
regular smaller scale patterns. Typically, in the exper-
imental data marked amplitudes were observed at the
integer multiples of the dominant mode. These ampli-
tudes were, in many cases, comparably large to that of
the dominant wave number (representing the overall ro-
tational symmetry). In the cylFloit simulations however,
the harmonics were not that pronounced. These smaller-
scale patterns are attributed to the cold eddies outside
and inside the meandering jet of the baroclinic wave.
The fact that these structures could not be resolved ac-
curately in the simulations may be due to the follow-
ing reasons: the cold eddies in the vicinity of the outer
rim seem to be excited by shear instability involving the
bouyancy layer, which was not resolved by most of the
models, as discussed above. This statement is supported
by the observation that the high-resolution EULAG tem-
perature fields occasionally showed such structures (cf.
VON LARCHER and DÖRNBRACK (2014) in the present

issue). Surface phenomena that are out of the scope of
the studied governing equations may also contribute to
making these cold eddies more pronounced. Such fac-
tors can be e.g. the “wind” stress that takes place at the
free surface of the experimental tank as it rotates, or the
presence of finite vertical heat fluxes at the top surface
(note, that all the models included the∇T ~ez|z=D = 0
type no-flux boundary conditions, which certainly can-
not be achieved in the experiment due to the free sur-
face). The role of the slight curvature of the top surface
due to the centrifugal effect is probably negligible: the
water depth difference∆d between the inner and outer
rim is found to be∆d = Ω2(b2 − a2)/(2g) ≈ 0.4− 2.5
mm in the applied rotation rate regime. Nevertheless,
this minor geometric distortion also adds to the list of
effects that were not implemented in the numerical mod-
els.

The azimuthal temperature variance patterns were
decomposed into sets of empirical orthogonal functions
(EOFs). We found that in the experimental distribu-
tion of the ranked relative variances – the normalized
eigenvalues corresponding to the EOF modes – typi-
cally follows a slowly decaying power-law type scaling,
implying that a considerable part of the total variance
is stored in the smaller scales (6-18 orthogonal modes
were needed to cover 90% of the total variance). In
general, the numerically obtained distributions exhibited
faster cut-offs towards the higher ranks, thus less small-
scale variance. The practical absence of the correlated
small-scale thermal fluctuations in the simulations sup-
ports the need for some subgrid-scale parametrization
that takes into account the growth of temperature fluc-
tuations that might play a significant role in the dynam-
ics. These fluctuations can be caused by the aforemen-
tioned experimental impurities (or possibly induced by
boundary layer effects) and “inflated” through the non-
linear interactions. Since the present work (and the Met-
Ström collaboration in general) has been motivated by
meteorological problems, it is important to emphasize,
that obviously, the sub-grid-scale processes of the atmo-
sphere are very different from, and way more complex
than, those of our experimental set-up. Yet, our observa-
tions of how the small-scale variability affects the stabil-
ity of the larger-scale patterns in the set-up – regardless
of the actual physical processes at subgrid-scales – from
a more general, dynamical systems point of view, may
also be of relevance for atmospheric or oceanic model-
ing.

Due to the differences between the numerical proce-
dures, drawing general summarizing conclusions from
the present study is far from straightforward. The
codes built by the numerical groups of our collabo-
ration were all developed based on the already exist-
ing solvers and numerical schemes that the respective
groups have previously gained experience with, inde-
pendently from modeling the differentially heated ro-
tating annulus. Therefore, since the models were dif-
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ferent in so many aspects (reference frames, grid struc-
tures, resolutions, subgrid-scale parametrizations, etc.),
the “parameter space” of model features was so large,
that no benchmarking strategy could have been inten-
tionally defined for comparing models of increasing de-
grees of complexity from one single aspect.

However, the main message of our results is that de-
spite of all this large diversity of the applied codes, they
do share some interesting commonalities. Firstly, the
experimentally obtained dominant wave numbers were
fairly well reproduced by all the codes. This is some-
what surprising in the light of the fact that the drift rates
(that are closely related to strength of the zonal back-
ground flow) were systematically overestimated by all
the models, except EULAG. This latter common feature
was found to be the consequence of improper grid res-
olution at the vicinity of the vertical sidewalls, where
the boundary layer drag was not sufficiently resolved.
As another general “message to take home” we can also
state that (i) the small-scale variability was not captured
properly by the models, as discussed above, yet (ii), the
large-scale patterns are properly reproduced. Thus, de-
spite of the obvious nonlinearity of the studied dynam-
ics, we can state that the coupling (‘information trans-
fer’) between the smaller and larger scales does not play
such a critical role in the studied flow regimes.

As a possible extension and continuation of this idea,
the response of the system to small amplitude temporal
and spatial thermal fluctuations (entering via the bound-
ary conditions) could be analyzed numerically in a fu-
ture research project. Such investigations – if the above
assumptions are correct – can possibly lead to even more
accurate numerical modeling and a deeper understand-
ing of the dynamics in this set-up. Also, our future
plans involve the extension of the presented benchmark-
ing techniques to numerical methods that reach beyond
the Boussinesq approximation (e.g. Low-Mach models)
whose application may be wise in the larger∆T -regime.

The results presented in this paper have clearly
demonstrated that the relatively simple rotating annu-
lus arrangement indeed provides a remarkable test bed
to verify and tune numerical methods aiming to model
large-scale atmospheric flows. The authors think that the
presented pool of experimental and numerical data and
the applied evaluation methods and “test quantities” will
also prove useful benchmarks for similar studies in the
future.
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