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The source mechanism of inertia-gravity waves (IGWs) observed in numerical simulations
of the differentially heated rotating annulus experiment is investigated. The focus is on
the wave generation from the balanced part of the flow, a process presumably contributing
significantly to the atmospheric IGW field. Direct numerical simulations are performed
for an atmosphere-like configuration of the annulus and possible regions of IGW activity
are characterised by a Hilbert-transform algorithm. In addition, the flow is separated
into a balanced and unbalanced part, assuming the limit of a small Rossby number, and
the forcing of IGWs by the balanced part of the flow is derived rigorously. Tangent-
linear simulations are then used to identify the part of the IGW signal that is rather
due to radiation by the internal balanced flow than to boundary-layer instabilities at the
side walls. An idealised fluid setup without rigid horizontal boundaries is considered as
well, to investigate the effect of the identified balanced forcing unmasked by boundary-
layer effects. The direct simulations of the realistic and idealised fluid setups show a
clear baroclinic wave structure exhibiting a jet-front system similar to its atmospheric
counterparts, superimposed by four distinct IGW packets. The subsequent tangent-linear
analysis indicates that three wave packets are radiated from the internal flow and a fourth
one is probably caused by boundary layer instabilities. The forcing by the balanced part of
the flow is found to play a significant role in the generation of IGWs so that it supplements
boundary-layer instabilities as key factor in the IGW emission in the differentially heated
rotating annulus.
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1. Introduction

Inertia-gravity waves (IGWs) are ubiquitous in Earth’s atmosphere. They either orig-
inate from flow over orography or can have non-orographic sources, such as convection
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or jet-front systems. After being generated in the troposphere, a large fraction of IGWs
propagates vertically and deposits momentum and energy in the middle atmosphere.
As a consequence, the strength of the polar vortex and the mesospheric meridional
temperature gradient are influenced significantly (Fritts & Alexander 2003). Furthermore,
IGWs exert control over the quasi-biennial oscillation (Baldwin et al. 2001). The state of
the stratosphere, in turn, strongly affects daily weather and climate of the troposphere
through downward control (Haynes et al. 1991; Scaife et al. 2005). This is why a
precise representation of IGWs is essential when performing weather forecasts and
climate projections. However, due to their small-scale structure, only a part of the IGWs
can explicitly be resolved by current weather and climate models. Thus, subgrid-scale
parameterizations have to be developed to take the effects of the unresolved on the
resolved dynamics into account. Therefore, knowledge about the spatial and temporal
distribution of the IGWs as well as an enhanced physical understanding of the ongoing
IGW processes is highly relevant.

There are various approaches to investigate IGW processes, ranging from atmospheric
measurements (satellite, radar or lidar measurements) over theoretical studies towards
numerical and experimental work. In this context, the consideration of idealised dynami-
cal systems, either experimental or numerical, turns out to be a useful tool. Their reduced
number of degrees of freedom compared to the real atmosphere facilitates an easier
extraction of the IGW signals and the description of the underlying physical processes.
Moreover, their reproducibility enables especially focussed investigations of the emission
mechanism. Finally, both numerical and laboratory studies allow parameter-sensitivity
studies that are of interest as well. Various studies use this approach to investigate the
IGW emission by jets and fronts. In contrast to orographically and convectively generated
IGWs, the physical understanding of this process is still insufficient to improve existing,
highly tuned parameterization schemes. Furthermore, there is an increasing desire to
also incorporate sensitivity to changing climate conditions to them. Evidence that the
emission of IGWs by jets and fronts represents a significant contribution to the overall
IGW field was first detected in observational studies. For instance, Uccellini & Koch
(1987) reviewed a series of IGW events observed in the lower troposphere and identified
the jet exit region to be the dominant source region of IGWs in locations without
orography. More recently, these findings were confirmed by a study of Plougonven et al.
(2003) who evaluated radiosonde data from a measurement campaign over the North
Atlantic. In addition, numerical studies have been conducted aiming to reproduce the
IGW signal seen in observations. O’Sullivan & Dunkerton (1995) were the first who
carried out idealised simulations describing flows of realistic complexity. They detected
strong IGW emissions at the jet exit region during the life cycle of a baroclinic wave.
Similar results were found by Wu & Zhang (2004) who performed mesoscale simulations
over the North Atlantic being in good agreement with satellite observations.

The general understanding of the IGW source mechanism has been changed in recent
years. Many previous experimental and numerical case studies referred to the classical
geostrophic adjustment as generation process, where an initially unbalanced rotating
fluid converts into a geostrophically balanced state by radiating IGWs (Uccellini & Koch
1987; O’Sullivan & Dunkerton 1995; Fritts & Luo 1992; Luo & Fritts 1993). However, no
statements are made as to how, why and where the initial imbalance appears (Plougonven
& Zhang 2014). Moreover, this mechanism misses the fact that the emission of IGWs is a
rather continuous process and no final adjusted state remains. More recent studies prefer
the mechanism of spontaneous emission (Zhang 2004) which comprises the continuous
radiation of IGWs from a predominantly balanced flow. In order to study this process
more precisely, numerical simulations with an idealised vortex dipole have been proven to
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be useful (Viúdez 2007; Snyder et al. 2009; Wang & Zhang 2010). This system consists
of a cyclone/anticyclone dipole that propagates as a coherent structure on a f -plane,
representing a simple model of a jet exit region. Results obtained by this configuration
show steady wave packets in front of the dipole associated with the jet exit region (Snyder
et al. 2009). Insights into the corresponding source processes can then be gained based
on a tangent-linear analysis as conducted by Snyder et al. (2009) and Wang & Zhang
(2010). By linearising the flow around a balanced background state a tangent-linear
model describes the linear time evolution of IGWs. This context allows to investigate the
forcing of IGWs by the purely balanced part of the flow qualitatively and quantitatively.
For instance, the vortex-dipole study of Snyder et al. (2009) showed that their forcing,
obtained by the residual tendency difference between the time tendencies of a quasi-
geostrophic solution and the corresponding full primitive equation system, appears to be
a leading contribution to the IGW signal.

Studies beyond the very idealized dipole system that consider freely generated jet-
front systems more similar to their atmospheric counterparts, are still pending. A step
in this direction is provided by the differentially heated rotating annulus experiment.
This experiment consists of a working fluid which is bounded between two vertical
coaxial cylinders maintaining a constant radial temperature difference. Additionally,
the apparatus rotates with a specific angular velocity. This system is very popular in
geophysical fluid dynamics because it can easily be constructed in laboratories and com-
pared with numerical studies. When choosing an appropriate set of physical parameters,
baroclinic waves develop which propagate steadily throughout the domain. Hence, this
system is well suited to study the dynamics observed in atmospheric baroclinic waves at
midlatitudes. Various studies were conducted to investigate baroclinic-wave life cycles and
the corresponding jet-front system in the rotating annulus (Früh & Read 1997; Sitte &
Egbers 2000; von Larcher & Egbers 2005; Harlander et al. 2012; Vincze et al. 2014). More
recently, the annulus has also been used to examine the generation and propagation of
IGWs. Jacoby et al. (2011) performed numerical simulations with a classic configuration
of the rotating annulus, where a relatively narrow gap between the two cylinder walls leads
to a ratio between the Brunt-Väisälä frequency N and the inertia frequency f which is
less than one. They observed IGWs originating in the boundary layer located at the inner
cylinder, a region of strong shear and downwelling at particular points within a large-
scale baroclinic wave. After being generated these waves propagate into the interior of the
annulus domain. Similar wave characteristics were found by Randriamampianina (2013)
and Randriamampianina & Crespo del Arco (2015). However, in contrast to Jacoby
et al. (2011), the authors assume that a temperature overturn in combination with a
flow reversal leads to the formation of a billow similar to that seen in Kevin-Helmholtz
instabilities. When this shear flow reaches the cold inner cylinder IGWs are triggered.
Borchert et al. (2014) carried out simulations for a more atmosphere-like configuration
of the rotating annulus where due to a wider gap, a shallower flow and a larger radial
temperature contrast N/f > 1 arises. They reported clear indications for additional
wave packets generated in the jet-front system. Unlike the IGWs generated at the inner
side walls, these waves are more relevant for related real atmosphere studies. However, a
detailed investigation of the source mechanism has not been done so far.

The main goal of our work is an understanding of the source mechanism of the
IGWs originating from the jet-front system in the rotating annulus. The study is based
on the parameter regime identified by Borchert et al. (2014) showing atmosphere-like
conditions for wave emission and propagation. Since boundary-layer instabilities still
seem to be a source in this setup, the question arises how much the spontaneous emission
by the balanced part of the internal flow contributes to the IGW field. Hence, the
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Figure 1. Schematic of the differentially heated rotating annulus experiment. Temperatures Ta

and Tb are prescribed at the inner (r = a) and outer (r = b) cylinder walls. d represents the fluid
height and Ω the angular velocity of the system. A cylindrical coordinate system consisting of
the azimuthal angle ϑ, the radial distance from the axis of rotation r and the vertical distance
from the bottom z is defined. The dotted rectangular boxes indicate the regular cylindrical
finite-volume grid. Courtesy of Borchert et al. (2014).

comparative importance of boundary-layer instabilities and of radiation by the internal
flow is investigated by several means: direct simulations of the differentially heated
rotating annulus and of a closely related fluid setup without rigid side walls. Balanced
and unbalanced flow parts are separated from each other, assuming the limit of a small
Rossby number. In this limit the forcing of IGWs by the internal balanced flow is derived
rigorously. Simulations with a tangent-linear model are then used to identify the part
of the IGW signal that is rather due to radiation by the internal balanced flow than to
boundary-layer instabilities. Our findings indicate that this forcing plays an important
role and support the application of the annulus experiment for studies of spontaneous
IGW emission.
The paper is structured as follows. After providing an overview of the nonlinear numerical
model, section 2 develops the theory of the coupling between balanced and unbalanced
flows in the low-Rossby-number limit, and the tangent-linear equations used for inves-
tigating the IGW radiation from the balanced flow are derived. Section 3 characterises
the different wave packets observed in the annulus and presents the comparative results
of the nonlinear and tangent-linear simulations, focussing on the emission of IGWs from
the internal flow. A summary and discussion are found is section 4.

2. Model and methodology

2.1. The models

2.1.1. Annulus configuration

A schematic of the differentially heated rotating annulus is shown in figure 1, where
a cylindrical coordinate system consisting of the azimuthal angle ϑ, the radial distance



IGW emission in the differentially heated rotating annulus 5

- inner radius, a: 20 cm
- outer radius, b: 70 cm
- fluid depth, d: 4 cm
- inner wall temperature, Ta: 15 ◦C
- outer wall temperature, Tb: 45 ◦C
- angular velocity, Ω: 0.08 rad/s (0.76 rpm)
- ρ1: −2.923× 10−4 K−1

- ρ2: −3.917× 10−6 K−2

- ν0: 8.160× 10−3 cm2 s−1

- ν1: −2.292× 10−2 K−1

- ν2: 2.819× 10−4 K−2

- κ0: 1.477× 10−3 cm2 s−1

- κ1: 2.758× 10−3 K−1

- κ2: −1.259× 10−5 K−2

- Ekman number, Ek: 6× 10−3

- thermal Rossby number, Roth: 0.5

Table 1. Physical parameters and derived dimensionless quantities for the atmosphere-like
configuration developed in Borchert et al. (2014).

from the axis of rotation r and the vertical distance from the bottom z is introduced.
The experiment consists of two vertical coaxial cylinders. The inner cylinder at radius
r = a is cooled (T = Ta) and the outer cylinder at radius r = b is heated (T = Tb).
The tank is filled with water up to a height d. Furthermore, the whole apparatus rotates
at a specific angular velocity Ω, forcing the fluid particles to experience Coriolis and
centrifugal accelerations.

The physical parameters used in this study are listed in table 1. Since deviations of
the density ∆ρ̂ from the constant background density ρ̂0 at the reference temperature
T0 = (Ta + Tb)/2 are relatively small (|∆ρ̂| < 0.01ρ̂0) in the considered temperature
range, the dynamics of the system is described by the Boussinesq approximation. The
pressure field is also divided up into a time-independent vertically varying background
field p̂0 and a deviation ∆p̂. The former is defined assuming hydrostatic equilibrium
between the pressure gradient, gravity and the centrifugal acceleration, i.e.

∇p̂0 = gρ̂0 − [Ω × (Ω × r)] ρ̂0, (2.1)

where∇ = eϑ(1/r)∂/∂ϑ+er∂/∂r+ez∂/∂z, g = −gez is the gravitational acceleration,
Ω = Ωez is the angular-velocity vector, and −Ω × (Ω × r) = Ω2rer is the centrifugal
acceleration. Here eϑ, er and ez are the azimuthal, radial and vertical unit vectors,
forming a left-handed coordinate system in this order.

The momentum equation under the Boussinesq approximation can then be written as

∂v

∂t
= −∇ · (vv + pI − σ)− 2Ω × v + gρ− [Ω × (Ω × r)] ρ (2.2)

where p ≡ ∆p̂/ρ̂0, ρ ≡ ∆ρ̂/ρ̂0 and v = ueϑ + ver + wez is the velocity vector, I is the
unit tensor and σ represents the viscous stress tensor

σ = ν
[
∇v + (∇v)

T
]
, (2.3)

with the kinematic viscosity ν and the superscript T indicating the transpose. The
continuity equation is given by

∇ · v = 0, (2.4)
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and the thermodynamic energy equation and the equation of state are

∂T

∂t
= −∇ · (vT ) +∇ · (κ∇T ) , (2.5)

ρ = ρ1 (T − T0) + ρ2 (T − T0)
2
, (2.6)

where T is the temperature, κ is the thermal diffusivity and ρ1 and ρ2 are fluid dependent
coefficients. The thermal diffusivity κ and the kinematic viscosity ν also depend on
temperature and are fitted by parabolas

ν = ν0

[
1 + ν1 (T − T0) + ν2 (T − T0)

2
]
, (2.7)

κ = κ0

[
1 + κ1 (T − T0) + κ2 (T − T0)

2
]
. (2.8)

Strictly speaking, we use an extension of the original Boussineq approximation since
temperature dependence is incorporated in different fluid properties in addition to the
density (Hignett et al. 1985). The values of the coefficients ρ1,2, ν0,1,2 and κ0,1,2 are
listed in table 1. As illustrated in Borchert et al. (2015), these fits capture the fluid
properties very well in the considered temperature range. As also shown there, for a
smaller temperature difference between the annulus walls than considered in our study,
the model shows a good agreement with corresponding laboratory studies. Experimen-
tal validation of the appropriateness of the Boussinesq approximation in settings as
considered here, with a comparatively large temperature difference, hence still seems
highly desirable. Nonetheless, we do not expect that this approximation significantly
influences the dynamics of the system. By scale analysis Gray & Giorgini (1976) have
investigated under which conditions the traditional Boussinesq approximation holds,
without temperature dependence in the fluid properties. Scrutiny of that study indicates
that under the conditions considered here all non-Boussinesq extensions are probably
negligibly small.

The physical parameters used in this study (see table 1) are taken from Borchert
et al. (2014). The configuration developed therein provides atmosphere-like conditions,
since, in particular, the spatially averaged Brunt-Väisälä frequency N is larger than the
inertial frequency f = 2Ω. As explained in detail in section 3.1.1, the stratification N
is caused and maintained by the overturning circulation arising from the temperature
gradient between the two side walls. This is why the temperature difference between top
and bottom ∆Tvert is approximately equal to the radial temperature difference Tb − Ta.
Hence, N can be estimated by

N ≡
√
g|ρ1(∆Tvert)|

d
≈
√
g|ρ1(Tb − Ta)|

d
, (2.9)

leading to N/f = O(10), which is approximately one order less than in the upper
troposphere of mid-latitudes (Esler & Polvani 2004). The importance of N and f in
the theoretical description of IGWs becomes particularly clear when considering the
dispersion relation of IGWs under Boussinesq approximation (Fritts & Alexander 2003)

ω̂2 =
N2
(
k2 + l2

)
+ f2m2

k2 + l2 +m2
= N2cos2(α) + f2sin2(α), (2.10)

where ω̂ is the intrinsic frequency, k, l,m are the zonal (azimuthal in the annulus context),
meridional (negative radial) and vertical wave numbers and α = arctan(m/

√
k2 + l2) is

the angle between the phase propagation and the horizontal plane. Thus, for a given
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value of ω̂, α is determined by the ratio of N to f . Moreover, the specific choice of
parameters determines, if the flow state will become baroclinically unstable, leading to the
formation of baroclinic waves. As discussed in detail in Borchert et al. (2015), a guideline
for understanding the instability mechanism is provided by the quasi-geostrophic model
developed by Eady (1949). Introducing the Rossby deformation radius Ld = Nd/f and
the dimensionless Burger number Bu = L2

d/(b − a)2, the model predicts the flow to
become unstable if

Bu ≡
(

Ld
b− a

)2

<
(µc
π

)2
, (2.11)

with (µc/π)2 = 0.583 (Hide & Mason 1975). Further dimensionless numbers used to
describe the flow properties are provided by the Rossby number Ro and the Ekman
number Ek. With U and L being characteristic horizontal velocity and length scales of
the large-scale flow, the Rossby number

Ro ≡ U

fL
(2.12)

describes the ratio of the inertial force to the Coriolis force of a rotating fluid. As explained
in section 2.2.1, this value can be used for a scale separation between large-scale balanced
motions and IGWs (Vanneste 2013). A rough estimate of Ro can be obtained by inserting
the thermal wind into the general definition (2.12), then yielding the thermal Rossby
number (Borchert et al. 2015)

Roth ≡
dgρ1|Tb − Ta|/f(b− a)

f(b− a)
=

(
N

f

d

b− a

)2

≈ 0.5. (2.13)

The Brunt–Väisälä frequency N2 can be reinserted in the Rossby number, due to the
equality of vertical and radial temperature differences in our configuration. The Rossby
number thus happens to be equal to the Burger number of the flow. The Ekman number

Ek =
ν0
Ωd2

≈ 0.006 (2.14)

represents the ratio of viscous forces to Coriolis force. The value is larger than the typical
value observed in the actual atmosphere, since we only consider a thin layer of water
moving at a relatively low velocity. However, the process of interest (IGW emission)
seems to be largely unaffected by this, even though it impacts the subsequent dissipation.

2.1.2. Cartesian, doubly periodic configuration

Previous studies indicate that IGWs in the differentially heated rotating annulus origi-
nate both from the jet-front system and from the boundary layer located at the inner side
wall of the annulus (Jacoby et al. 2011; Randriamampianina 2013; Randriamampianina &
Crespo del Arco 2015; Borchert et al. 2014). We wish to contribute to the improvement of
the physical understanding of the source processes, so that we focus on IGWs originating
from the jet-front system. Two supplementary approaches are therefore pursued here to
quantify the role of this process, as compared to boundary-layer instabilities. In both
approaches first the forcing of IGWs by the balanced part of the flow is identified, and
then its effect is quantified using a tangent-linear model. In one set of investigations
we stick to the annulus geometry where radial-boundary-layer processes always seem to
matter. We also consider an idealised fluid-flow setup without rigid side walls. This is
achieved by adapting our model configuration to a Cartesian geometry with periodic
boundary conditions in both horizontal directions. On the one hand we can demonstrate
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- zonal length, Lx: 63 cm
- meridional length, Ly: 100 cm
- fluid depth, d: 4 cm
- minimum forced temperature, Ta: 10 ◦C
- maximum forced temperature, Tb: 50 ◦C
- angular velocity, Ω: 0.157 rad/s (1.5 rpm)
- relaxation time, τ 1000.0 s
- temperature forcing thickness, σy 0.06
- Ekman number, Ek: 3× 10−3

- thermal Rossby number, Roth: 0.2

Table 2. Physical parameters and derived dimensionless quantities for the doubly periodic,
Cartesian configuration.

by this approach that an emission of IGWs by the jet-front system takes place, since
side-wall effects are excluded by construction. On the other hand we can quantify the
contribution of both processes to the IGW field. For the doubly periodic configuration
we introduce a left-handed Cartesian coordinate system represented by the unit vectors
ex, ey and ez (with correspondences eϑ → ex, er → ey and ez = ez). The equation
system to be solved is still given by (2.2) – (2.6) but the energy conservation equation
(2.5) is modified to include a forcing term F causing a baroclinically unstable hyperbolic
tangent temperature profile

∂T

∂t
= −∇ · (vT ) +∇ · (κ∇T ) + F, (2.15)

with

F = −1

τ
(T − Tr) , (2.16)

and

Tr = Ta + (Tb − Ta)

(
1− 1

2

[
tanh

{
1

σy

(
y

Ly
− 1

4

)}
− tanh

{
1

σy

(
y

Ly
− 3

4

)}])
,(2.17)

where Ta and Tb are the minimum and maximum forced temperatures (Tb > Ta) and σy
is the relative thickness of the temperature jump in the forcing. τ is a relaxation time
which modulates the amplitude of the temperature forcing. Choosing 1/τ = 1/1000 s
turns out to affect the temperature profile appropriately. Moreover, this choice ensures
that the relaxation acts on time scales well above the dynamical time scales of interest in
the spontaneous emission process. Figure 2 displays the hyperbolic temperature profile
Tr and the values of its parameters and the corresponding dimensionless quantities can
be found in table 2. The domain size is chosen such that we expect it to accommodate
one wavelength of the baroclinic wave. Beyond the Cartesian geometry without solid
horizontal walls, however, the setup is still very close to the annulus setup: water is used
as working fluid with the same viscous and diffusive properties as described in section
2.1.1.

2.1.3. Numerical methods

The numerical model used for the simulations of the differentially heated rotating
annulus is the same as used by Borchert et al. (2014, 2015). It makes use of a finite
volume algorithm to solve the equation system (2.2) – (2.6) numerically. Therefore, the
annulus volume is subdivided into volume cells of azimuthal width ∆ϑ, radial width
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Figure 2. Tangent hyperbolic temperature profile Tr(y) as implemented in the Cartesian,
doubly periodic model configuration. See expression (2.17) for the functional dependence.

∆r and vertical extension ∆z and the variables are discretised on a staggered C-grid
(Arakawa & Lamb 1977). In contrast to the studies of Borchert et al. (2014, 2015) in
which the implicit subgrid scale parametrisation ALDM (adaptive local deconvolution
method, Hickel et al. 2006) is implemented through a special handling of the advective
terms, we determine the fluxes from the surrounding volume-averaged velocities using
the second-order centered-difference option of the model. This is justified since our
numerical simulations are carried out with a relatively high spatial resolution allowing
to resolve most of the small-scale processes explicitly. The time integration of the four
prognostic equations for the velocity fields v = (u, v, w) and the temperature T is
done using a low-storage third-order Runge-Kutta method (Williamson 1980) with an
adaptive time step determined by the instantaneous velocity field. The pressure field p
is diagnosed from the three velocity components by solving a Poisson equation which
ensures that the continuity equation (2.4) is satisfied.

2.2. IGW radiation by the balanced part of the flow in the rotating annulus

Here, we systematically analyse the interaction between the balanced flow part and the
IGWs (constituting the unbalanced part of the flow), and identify the forcing of IGWs
by the balanced flow. This is conditioned on a manageable separation of the flow and its
dynamical equations into balanced and unbalanced parts. For this reason we here restrict
ourselves to linear balance conditions and a determination of the balanced flow from the
inversion of linear potential vorticity (PV), as is strictly appropriate in the limit of a
small Rossby number (Charney 1948; Hoskins et al. 1985; Pedlosky 1987; Achatz et al.
2017). This approach is supplemented by the extraction of balanced vertical motion and
horizontal divergence by the application of the omega equation.

2.2.1. Balanced and unbalanced flow parts, and their interaction

In order to examine the characteristics and sources of IGWs as precisely as possible,
the extraction of the IGW signal from the remaining flow is essential. One possible way
to do that is presented in Borchert et al. (2014) who determine the large-scale part of
the flow by a moving average. The difference between the full and the averaged field
is then associated with the small-scale part including the IGW signal. Furthermore, a
linear modal decomposition is applied to estimate the contribution of the IGWs to the
small-scale structures of the flow. Here, we choose another definition for the separation



10 S. Hien et al.

of the flow into a balanced (subscript b) and unbalanced (subscript u) part v
B
p

 =

 v
B
p


b

+

 v
B
p


u

. (2.18)

The first term on the right-hand side satisfies appropriate balance relations (e.g., the
geostrophic and the hydrostatic balance) and can be determined from the left-hand-side
state by potential vorticity inversion (e.g., Davis & Emanuel 1991). The unbalanced
flow is given by the difference between the full and the balance fields and contains the
IGWs. Note that we introduced the buoyancy B = −ρg, and that the pressure p and the
buoyancy B represent deviations from the mean thermal stratification p̂0 = p̂0(z) and
B̂0 = dp̂0/dz. The introduction of this separation also enables an investigation of the
coupling between the large-scale balanced part and the IGWs. Many different definitions
can be found in the literature to determine the balanced part of the flow ranging from
rather simple balance assumptions to more complex higher order balance approaches
(e.g., Warn et al. 1995; Zhang et al. 2000; Viúdez & Dritschel 2006; Snyder et al. 2009;
Wang & Zhang 2010). In general, the balanced part of the flow should capture the large-
scale motion of the stratified fluid (i.e., the baroclinic waves) as precisely as possible.

In most models potential vorticity is assumed to be a key variable of the large-scale
horizontal flow to which the balanced part of the flow shall be the only contribution
by definition. After computing the PV from the full flow state, the balanced part of
the flow is computed diagnostically from the PV using balance relations (PV inversion,
e.g., Hoskins et al. 1985; McIntyre & Norton 2000; Vanneste 2013). Based on theoretical
considerations, but also for practical purposes, we here take a slightly different route.
In our configuration of the differentially heated rotating annulus (see section 2.1) the
Rossby number is small (Ro < 1) in most locations. As shown by Bühler & McIntyre
(2005) in the Lagrangian-mean and by Achatz et al. (2017) in the Eulerian perspective,
in that limit IGWs contribute to the nonlinear part of PV, while the linear part is
determined exclusively by a geostrophically and hydrostatically balanced component, as
also in quasi-geostrophic theory (Charney 1948; Pedlosky 1987; Vallis 2006). Moreover, as
can be verified from their polarization relations, linear IGWs have no linear PV (Phillips
1963; Mohebalhojeh & Dritschel 2001; Smith & Waleffe 2002). Hence we define a so-called
balanced flow so that it satisfies the geostrophic and hydrostatic balance relations

fez × ub = −∇hpb, (2.19)

Bb =
∂pb
∂z

, (2.20)

with the horizontal velocity ub, and so that it yields the total linear PV. Consequently,
we have

Π = ζ +
f

N2

∂B

∂z
= Πb = ζb +

f

N2

∂Bb
∂z

=
1

f
∇2

qgpb. (2.21)

Herein, ζ = ez · (∇h × u) represents the vertical component of the vorticity, ∇h is
the horizontal part of the nabla operator, ζb = ez · (∇h × ub) is the balanced vertical
vorticity, and ∇2

qg ≡
(
∇2

h + f2/N2∂2/∂z2
)

is the quasi-geostrophic Laplacian. Naturally
this also implies that the remainder of the flow (henceforth called the unbalanced part,
as it contains the IGW part and all of the imbalance, in addition to a usually weaker
balanced contribution), uu = u − ub and Bu = B − Bb, does not contribute to linear



IGW emission in the differentially heated rotating annulus 11

PV

Πu = ζu +
f

N2

∂Bu

∂z
= 0, (2.22)

where ζu = ez · (∇h × uu) is the unbalanced vertical vorticity. To avoid misunderstand-
ings, we also note that the balanced pressure pb that we obtain from inverting linear
PV in (2.21) is only approximately identical to the geostrophic pressure, i.e. the leading-
order part in a Rossby-number expansion of the total pressure fluctuations. As shown
by Muraki et al. (1999) for the hydrostatic case, e.g., the next-order corrections to the
balanced flow, that one might term the ageostrophic flow, do enter linear PV, so that
ageostrophic linear PV does not vanish. However, these next-order corrections are smaller
by O(Ro), so that the (non-vanishing) deviations between balanced flow, as defined here,
and the geostrophic flow are small in the limit of small Ro. This then does not outweigh
the practical advantage we have from the linear flow decomposition just described, as the
latter allows a straightforward reformulation of the dynamics in terms of an interaction
between balanced flow and unbalanced (IGW carrying) flow, as described below.

Nonetheless, as what we call unbalanced flow does contain some balanced contributions
if the Rossby number is sufficiently large (McWilliams 1985; Muraki et al. 1999, e.g.), our
diagnostics below will go a step further by extracting the contributions from unbalanced
flow balanced to next order in the Rossby number, using the quasi-geostrophic omega
equation. Moreover, in order to validate the assumption that the unbalanced part of
the flow mainly consists of IGWs, we have also applied a linear modal decomposition of
the balanced and unbalanced flow, as described in Borchert et al. (2014). The amounts
of energy contained in the geostrophic and in the IGW modes (not shown) do indeed
confirm that the unbalanced part of the flow is dominated by IGWs since the geostrophic
energy in the unbalanced flow is approximately one order of magnitude less in amplitude
than the IGW energy. By the same means we have also convinced ourselves that the
balanced flow does not contain any IGW energy at all.

For an investigation of the interaction between balanced and unbalanced flow, we follow
Borchert et al. (2014) and simplify the dynamical equations by neglecting friction, heat
conduction and centrifugal acceleration. Furthermore, we replace the thermodynamic
energy equation by an equivalent equation for the buoyancy. The resulting Boussinesq
system is (Vallis 2006)

Du

Dt
= −fez × u−∇hp, (2.23)

Dw

Dt
= B − ∂p

∂z
, (2.24)

DB

Dt
= −N2w, (2.25)

0 =∇h · u+
∂w

∂z
, (2.26)

where D/Dt = ∂/∂t + v · ∇ is the material derivative. As shown in appendix A, one
can derive from these equations a prognostic equation for the (balanced) linear PV, and
hence for the balanced flow,

DΠ

Dt
= −

(
ζ − f

N2

∂B

∂z

)
δ − ∂u

∂z
·
(
ez ×∇hw +

f

N2
∇hB

)
. (2.27)

Note, that DΠ/Dt has no purely balanced contribution since δ = δu (see equation 2.60),
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w = wu and (∂ub/∂z) · ∇hBb = 0. Therefore, Π is conserved in the absence of an
unbalanced flow component (i.e., when u = ub and B = Bb).

To obtain a set of prognostic equations for the unbalanced flow, we now decompose
the variables into a geostrophically and hydrostatically balanced and into an unbalanced
part as described in section 2.2.1. Additionally, we make use of the geostrophic and
hydrostatic balance relations (2.19), (2.20) and of the fact that the unbalanced flow, as
defined here, has zero linear PV (2.22). This leads to the prognostic system

Duu

Dt
= −fez × uu −∇hpu −

(
Dub

Dt

)
b

−
(

Dub

Dt

)
u

, (2.28)

Dwu

Dt
= Bu −

∂pu
∂z

, (2.29)

DBu

Dt
= −N2wu −

(
DBb

Dt

)
b

−
(

DBb

Dt

)
u

, (2.30)

0 =∇h · uu +
∂wu

∂z
(2.31)

0 = ζu +
f

N2

∂Bu

∂z
. (2.32)

Here, the material derivatives of the balanced fields on the right-hand side, both
actually functions of the balanced and unbalanced flow components, have been further
subdivided into a purely balanced and into an unbalanced part. As shown in appendix
B these are (

Dub

Dt

)
b

=
1

f
ez ×

[
∇h

(
Dpb
Dt

)
b

−∇hub · ∇hpb

]
, (2.33)(

DBb

Dt

)
b

=
∂

∂z

(
Dpb
Dt

)
b

− ∂ub

∂z
· ∇hpb (2.34)

with (
Dpb
Dt

)
b

= ∇−2qg

(
∇2

qgub · ∇hpb
)

(2.35)

and (
Dub

Dt

)
u

=
1

f
ez ×

[
∇h

(
Dpb
Dt

)
u

−∇hvu · ∇pb
]
, (2.36)(

DBb

Dt

)
u

=
∂

∂z

(
Dpb
Dt

)
u

− ∂vu
∂z
· ∇pb, (2.37)

with (
Dpb
Dt

)
u

= ∇−2qg

(
f

DΠ

Dt
+ 2∇qgvu ·· ∇∇qgpb +∇2

qgvu · ∇pb
)
. (2.38)

Herein, ∇−2qg denotes the inversion of the quasi-geostrophic Laplacian defined in (2.21)
and ∇qg ≡∇h + ez(f/N)∂/∂z (provided that N2 > 0) such that ∇2

qg =∇qg · ∇qg. In
addition, ·· denotes the double scalar product of two tensors (definition in appendix B).
We have thus obtained a rigorous reformulation of the Boussinesq system (2.23) – (2.26) in
terms of an interaction between balanced (geostrophic and hydrostatic) and unbalanced
flow parts. Of central importance for the further investigations is the observation that
even in the initial absence of any unbalanced flow part, and hence also IGWs, the balanced
part of the material derivative of the balanced pressure in (2.35) can be non-zero, as
well as the balanced material derivatives of balanced wind (2.33) and balanced buoyancy
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(2.34). This is a direct forcing of the unbalanced flow in (2.28) and (2.30) by the balanced
(geostrophic and hydrostatic) flow!

2.2.2. Boundary conditions for the inversion problems

The dynamical decomposition described above entails various inversions that are only
well defined with the corresponding boundary conditions, and also turn out to be very
sensitive to them. These are non-trivial in the non-periodic directions. To begin with,
the linear PV (2.21) is to be inverted to obtain the balanced pressure pb, which is then
used to obtain the balanced horizonal velocity field ub and the buoyancy distribution
Bb using (2.19) and (2.20). The corresponding radial boundary condition in the annulus
setup is obtained from assuming zero azimuthal balanced flow at the side walls. Due to
the geostrophic balance (2.19) the radial balanced-pressure gradient must vanish,(

∂pb
∂r

)
r=a,b

= 0 (2.39)

The vertical boundary condition, both for the annulus and for the doubly periodic
Cartesian setup, is obtained from hydrostatic equilibrium (Zhang et al. 2000)(

∂pb
∂z

)
z=0,d

= B|z=0,d. (2.40)

For the solution of equations (2.35) and (2.38) we obtain the vertical boundary condition

∂

∂z

(
Dpb
Dt

)
=

D

Dt

∂pb
∂z

+
∂v

∂z
· ∇pb

=
DBb

Dt
+
∂v

∂z
· ∇pb

=
∂v

∂z
· ∇pb for z = 0, d. (2.41)

Here, we make use of the hydrostatic equilibrium (2.20) and the buoyancy equation
(2.25), together with w(z = 0) = w(z = d) = 0. Next we separate the terms into a
balanced and an unbalanced part,

∂

∂z

(
Dpb
Dt

)
b,u

=
∂vb,u
∂z
· ∇pb for z = 0, d. (2.42)

Analogously, the radial boundary conditions, only for the annulus setup, can be derived
as

∂

∂r

(
Dpb
Dt

)
=

D

Dt

∂pb
∂r

+
∂v

∂r
· ∇pb

=
∂v

∂r
· ∇pb for r = a, b, (2.43)

where again the azimuthal balanced velocity ub = 1/f(∂pb/∂r) vanishes at the radial
boundaries. Finally we obtain

∂

∂r

(
Dpb
Dt

)
b,u

=
∂vb,u
∂r
· ∇pb for r = a, b. (2.44)

All operator inversions are done using a preconditioned biconjugate gradient stabilised
(BiCGSTAB) method (Van der Vorst 1992).
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2.2.3. A tangent-linear model to describe the unbalanced flow

For a systematic investigation of the balanced forcing of the unbalanced flow, and how
much it contributes to the IGW emission in the differentially heated rotating annulus,
we make use of a tangent-linear model to simulate the dynamics of the unbalanced part
of the flow on the geostrophically and hydrostatically balanced background. Such an
approach seems reasonable when the amplitudes of the unbalanced flow are sufficiently
small and nonlinear self interactions can be neglected over a certain integration period.
Snyder et al. (2009) and Wang & Zhang (2010) have already used tangent-linear models
to study the spontaneous IGW emission in a vortex dipole. In their studies the forced
linear model simulations compare well with the IGWs signal seen in the fully nonlinear
model. In this section we present our tangent-linear approach, compare it to those used
by others and finally summarize some technical details. To clarify our concept, we rewrite
the annulus equations (2.27) – (2.32) as follows

∂sb
∂t

= Gb (sb, su) (2.45)

∂su
∂t

= Gu (sb, su)

= Fu (sb) +Lu (sb) su +Nu (su) (2.46)

where sb(x, t) and su(x, t) are the balanced and unbalanced prognostic variables, and
Gb (sb, su) is the nonlinear tendency of the balanced flow. The nonlinear tendency
Gu (sb, su) of the unbalanced flow is decomposed into a forcing Fu (sb) depending
only on the balanced flow, a linear part with an operator Lu (sb) and the nonlinear
unbalanced-self-interaction terms Nu (su) that are all quadratic in the unbalanced
variables. In our tangent-linear model we prescribe the balanced flow from an exact
solution of the nonlinear annulus equations, and assume sufficiently weak unbalanced
amplitudes in su so that Nu can be neglected. This leads to the linear prognostic system(

∂su
∂t

)
lin

= Fu (sb) +Lu (sb) su. (2.47)

Since each term on the right-hand side contributes additively to the temporal evolution
of the unbalanced part su, causes and effects can be assigned more easily to each other
than this would be possible in the fully nonlinear system. This enables us to explicitly
quantify how much the balanced forcing contributes to unbalanced tendencies. Both
terms on the right-hand side in (2.47) are important influencing factors for the evolution
of a wave packet. Their different roles can be understood by considering the linear
system as a simple forced oscillator (Plougonven & Zhang 2014). Fu forces a range
of frequencies/wavelengths and controls the amplitude of su. In contrast, the linear
operator Lu mainly influences the structure of the wave packet by affecting the location,
orientation and frequency of the wave. This becomes particularly clear when the linear
model is initialised with zero unbalanced part and only the (generally non-zero) term
Fu(sb) leads to a forcing of the unbalanced flow and thus may induce IGWs.

The tangent-linear model is obtained by linearising the equation system (2.28) –
(2.32), with prescribed time-dependent balanced flow as observed in the nonlinear model
integrations. Most of the terms already show a tangent-linear structure. Only the material
derivatives on the left-hand side and the material derivative of the PV (2.27), used in
(2.38), are affected by the linearisation leading to

∂uu

∂t
= −ub · ∇uu − fez × uu −∇hpu −

(
Dub

Dt

)
u,lin

−
(

Dub

Dt

)
b

, (2.48)



IGW emission in the differentially heated rotating annulus 15

∂wu

∂t
= −ub · ∇wu +Bu −

∂pu
∂z

, (2.49)

∂Bu

∂t
= −ub · ∇Bu −N2wu −

(
DBb

Dt

)
u,lin

−
(

DBb

Dt

)
b

, (2.50)

0 =∇h · uu +
∂wu

∂z
, (2.51)

0 = ζu +
f

N2

∂Bu

∂z
. (2.52)

where (
Dub

Dt

)
u,lin

=
1

f
ez ×

[
∇h

(
Dpb
Dt

)
u,lin

−∇hvu · ∇pb

]
, (2.53)(

DBb

Dt

)
u,lin

=
∂

∂z

(
Dpb
Dt

)
u,lin

− ∂vu
∂z
· ∇pb, (2.54)

with (
Dpb
Dt

)
u,lin

= ∇−2qg

[
f

(
DΠ

Dt

)
lin

+ 2∇qgvu ·· ∇∇qgpb +∇2
qgvu · ∇pb

]
(2.55)

and (
DΠ

Dt

)
lin

= −
(
ζb −

f

N2

∂Bb

∂z

)
δu −

∂ub

∂z
·
(
ez ×∇hwu +

f

N2
∇hBu

)
− f

N2

∂uu

∂z
· ∇hBb. (2.56)

These equations form a closed forced system for the linear unbalanced flow components.
Note that in the limit of small Rossby number, small IGW scales, and small aspect ratio,
the wave equation of Plougonven & Zhang (2007) could be derived from this system.
However, such a step is not necessary for the numerical integration of our model, and we
rather keep it in the present more general form.

It seems worthwhile comparing our approach to related studies by others. Plougonven
& Zhang (2007) suggested a forcing of the unbalanced flow that corresponds to the
total material derivatives of the balanced flow on the right-hand sides of (2.28) and
(2.30). This approach was also used by Wang & Zhang (2010). However, these material
derivatives have an unbalanced part that is due to the unbalanced flow and belongs to the
linear operator. This problem was avoided by Snyder et al. (2009) who obtained a linear
model by prescribing a time-dependent balanced flow from the integration of a quasi-
geostrophic model. This would correspond to integrating (2.27) with zero right-hand
side. The linear equations are then forced by the residual tendency difference between
the time tendencies of the quasi-geostrophic solution and the full primitive equations.
In contrast to this approach, we use the real time-dependent balanced flow as results
from the full dynamics. To extract the part of the nonlinear forcing (subscript b in the
material derivatives on the right-hand side in (2.48) – (2.52)) which is exclusively due
to the balanced flow, we have to take the steps described above. This enables a more
direct exploration of the role of the balanced flow in the generation and propagation of
the IGWs which are included in the unbalanced flow.

For consistency, the viscous friction and the heat conduction appearing in the full
system (2.2) – (2.6) are also implemented in the tangent-linear equations. We have also
performed sensitivity tests changing the values of ν and κ in order to investigate their
influence on the linear dynamics and to test their ability as simplified parametrization of
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the neglected nonlinearities. However, it turns out that no modifications from the original
values (see equations (2.7) and (2.8)) are required for the integration time periods we are
interested in. Numerically, the quasi-geostrophically and hydrostatically balanced part
is calculated each time step from the full fields (see section 2.2.1). Therefore, and for all
following considerations, N2 is assumed to be constant throughout the domain allowing
an efficient model performance. This is justifiable, since the actual vertical profile of
N2 does not depart strongly from a uniform value in the region of interest (0.5 < z <
3.5 cm). The balanced fields serve as background for the tangent-linear model which is
integrated parallel to the full model. However, some tests show that, independently of
the initial condition, the linear unbalanced flow components diverge after a few seconds
of integration time. Further investigations point out very fast growth rates at the inner
and outer cylinders of the annulus, most likely caused by boundary layer instabilities. In
order to suppress these growth rates at the side walls, the linear fields are multiplied by
a window function

α(r?) =


1, |r?| 6 βLy
1
2

{
1 + cos

[
π(|r?|−βLy)

Ls

]}
, βLy < |r?| 6 [β + γ(1− β)]Ly

0, else

(2.57)

at each timestep. Therein, Ls = γ(1− β)Ly and β, γ are freely selectable tuning param-
eters. Varying these values does not influence the occurrence of the IGWs. Therefore, we
decided to use β = 0.95 and γ = 1.0, whereby only grid points located near the side walls
are affected. Note that for simplicity reasons we shift the origin of the radial coordinate
to the radius r? = r − (a + b)/2 before applying (2.57) on the fields. In general, this
modification has two major impacts. On the one hand the wave emission in the internal
region and, in particular, in the vicinity of the jet exit region might be influenced causing
a reduced correlation between the full and the linear model fields. However, on the other
hand the application of the window function also inhibits the generation of IGWs at the
boundaries as seen in Randriamampianina & Crespo del Arco (2015) and Jacoby et al.
(2011). As a consequence, we can further concentrate on the part of the IGW signal
resulting from spontaneous imbalances rather than from boundary layer instabilities.
Obviously, such a window function is not to be used in the doubly periodic Cartesian
setup.

2.2.4. Balanced vertical velocity and horizontal divergence from the QG omega equation

The separation into geostrophic/hydrostatic and unbalanced flow entails that horizon-
tal velocity divergence and vertical velocity are, to leading order in Ro, exclusively due to
the unbalanced flow. However, if we include terms of next order in Ro into the definition
of the balanced flow part, the horizontal divergence has a non-vanishing balanced part
δbal (as is known from the quasi-geostrophic theory). This part can be diagnosed from
the QG omega equation (Hoskins et al. 1978; Holton 2004; Danioux et al. 2012)

∇2
qgwbal = − 2

N2
∇h ·Q, (2.58)

with the boundary conditions wbal(z = 0) = wbal(z = d) = 0. Q = ∇hub · ∇hBb

depends only on the balanced fields. The result is then used to estimate the balanced
part

δbal = −∂wbal

∂z
(2.59)
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of the total horizontal velocity divergence

δ = δbal + δunbal. (2.60)

As this next order definition of the balanced flow part is widely used in in the literature,
we will use δunbal = δ − δbal as an indicator for IGWs in the following sections.
Corresponding imbalance diagnosis is equivalent to the use of the nonlinear balance
residual of the divergence equation, as suggested by Zhang (2004). To see this one can
refer to the expansions given by McWilliams (1985). There it is shown that the nonlinear
balance residual in the divergence equation vanishes to O(Ro2) if Rossby and Froude
number are of the same order, as is the case in quasi-geostrophic theory. The balanced
divergence from the quasigeostrophic omega equation is exact to O(Ro) so that the
corresponding divergence residual also indicates imbalance to O(Ro2). Finally we also
note that the error we introduce by using in Q the balanced flow, given by ub and Bb,
instead of the geostrophic flow, in the sense of the leading-order expansion of all variables
in terms of the Ro, is by O(Ro) smaller than δbal.

2.3. Introduction of wave diagnosis

The unbalanced horizontal velocity divergence δunbal introduced in the previous section
is already a very useful quantity to detect IGW packets. In order to obtain quantitative
information on the local wave properties such as wave numbers or amplitudes, another
methodology is developed based on phase-independent estimates (Schoon & Zülicke
2017). Therefore, complex quantities are constructed for an amplitude-phase presentation
(von Storch & Zwiers 2002; Zimin et al. 2003; Sato et al. 2013). The complex values of
a function f(x) are found with the Hilbert transform in x-direction

f̂ = f(x) + iHx[f ]. (2.61)

The amplitude

Ax[f ] =
(
f(x)2 +Hx[f ]2

)1/2
(2.62)

gives an estimate of the local envelope of an oscillating function. The phase

ϕx[f ] = arctan

(
Hx[f ]

f(x)

)
(2.63)

is used to derive an estimate of the absolute wave number

kx[f ] =

∣∣∣∣∂ϕx[f ]

∂x

∣∣∣∣ . (2.64)

For three-dimensional data, we combine the wave number-weighted estimates of all
directions as

A[f ]2 = wxAx[f ]2 + wyAy[f ]2 + wzAz[f ]2, (2.65)

wd[f ] =
kd[f ]2

kx[f ]2 + ky[f ]2 + kz[f ]2
, d = (x, y, z). (2.66)

This way, amplitude and wave numbers are available at each point.



18 S. Hien et al.

a)

25 30 35 40 45 50 55 60 65

1

2

3

z 
[c

m
]

0

1

2

b)

25 30 35 40 45 50 55 60 65

1

2

3

z 
[c

m
]

20

30

40

c)

25 30 35 40 45 50 55 60 65

r [cm]

1

2

3

z 
[c

m
]

-5

0

5

10

Figure 3. Contour lines of the azimuthally symmetric, stationary 2D solution of the rotating
annulus experiment: a) zonal velocity u2D (in cm s−1), b) temperature T2D (in ◦C) and c) pressure
p2D (in cm2 s−2).

3. Results

3.1. Large-scale baroclinic background flow

3.1.1. Annulus

The simulation strategy is similar to that applied by Borchert et al. (2014). First of all,
we perform a coarse two-dimensional (2D → without azimuthal dependence) simulation
to obtain an azimuthally symmetric asymptotic steady state (after an integration time
of 36000 s), indicated by the asymptotic behaviour of the volume averaged kinetic and
potential energies. The corresponding 2D fields of zonal velocity u2D, temperature T2D
and pressure p2D are displayed in figure 3. These fields are in first order in geostrophic
and hydrostatic balance showing a typical thermal-wind shape: the zonal velocity (figure
3a) increases with height exhibiting maximum wind speeds near the fluid surface. The
temperature (figure 3b) as well as the pressure field (figure 3c) show positive vertical
gradients (∂T2D/∂z > 0, ∂p2D/∂z > 0). The positive temperature gradient corresponds
to a stable stratification due to a decrease of density with height (compare (2.6)). In
addition, the flow is baroclinically unstable with respect to the Eady condition (2.11).
Since our choice of parameters triggers a steady azimuthal baroclinic wave number of
three, we restricted the following three-dimensional (3D) simulations to one azimuthal
wavelength with 2π/3-periodicity in azimuthal direction. This measure allows for a three
times higher azimuthal grid resolution enabling to resolve most of the small-scale features
explicitly. The full 3D model is initialised with the 2D steady fields superimposed by a
random low-amplitude temperature perturbation. A coarse model run is then carried out
until a baroclinic wave with a constant amplitude established (after 2100 s). The spatial
resolution used for the coarse simulations is Nϑ = 80, Nr = 80 and Nz = 30, where Nϑ,
Nr and Nz represent the numbers of grid cells in azimuthal, radial and vertical direction.
Next, the fields are interpolated to a finer grid (Nϑ = 160, Nr = 160 and Nz = 90) and
further model integrations are done for 1100 s until the artefacts of the interpolation have
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Figure 4. Horizontal cross-section (at z = 3d/4 = 3 cm) of a 3D rotating annulus simulation:
a) pressure p3D (in cm2 s−2), b) vertical component of relative vorticity ζ (in s−1), c) absolute
value of horizontal velocity |u3D| (in cm s−1) and d) temperature T3D (in ◦C) after 3200 s of
integration time.

disappeared. The results obtained from the 3D simulations are given in figure 4, showing
horizontal cross-sections of various fields. The pressure distribution p3D shows a minimum
in the middle of the domain (figure 4a) which agrees with the location of an alternating
vortex structure visible in the vertical component of the relative vorticity ζ = (∇× v)·ez
(figure 4b). This system is characterized by an asymmetric structure showing an intense
vortex (ζ > 0) in the center of the pressure minimum which is surrounded by a low
amplitude spread out vortex (ζ < 0). Comparable background flow characteristics are
found in vortex-dipole studies (Viúdez 2008; Wang et al. 2009) where the generation
and propagation process of IGWs is investigated. Figures 4c and 4d display the absolute
value of the horizontal velocity and the temperature distribution. A jet (indicated by
maximum wind speeds) is meandering around the pressure minimum accompanied by
a temperature front (strong horizontal temperature gradients), they form a jet-front
system. Additionally, regions of strong decrease in wind speeds, most clearly visible to
the right of the pressure minimum, are referred to as jet exit regions.

Similar structures were present in the simulations of O’Sullivan & Dunkerton (1995)
which show enhanced IGW signals in the jet exit region when simulating a life cycle
of baroclinic instability. As already discussed in Hide (1967), the vertical temperature
gradient ∂T/∂z (see figure 3) in the annulus configuration arises and is maintained by a
meridional circulation which transfers heat from the heated outer cylinder towards the
cold inner cylinder. This circulation is quite similar to the meridional overturning in the
ocean which is created by sideway convection (Vallis 2006). In contrast, Vincze et al.
(2016), for instance, used a vertical salinity gradient to generate a stratification in the
annulus experiment.

3.1.2. Cartesian doubly periodic configuration

For the doubly periodic, Cartesian configuration the simulation strategy is similar to
that conducted in the cylindrical model explained before (section 3.1.1). However, in
contrast to the cylindrical configuration, the numerical resolution remains unchanged
during the simulations. We choose Nx = 90, Ny = 480 and Nz = 30 grid points in
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Figure 5. Contour lines of the azimuthally symmetric, stationary 2D solution of the doubly
periodic, Cartesian model: a) zonal velocity u2D (in cm s−1) and b) temperature T2D (in ◦C).

a)

20 40 60 80

y [cm]

10

20

30

40

50

60

x 
[c

m
]

-3

-2

-1

0

1

2

3

4 b)

20 40 60 80

y [cm]

10

20

30

40

50

60

20

25

30

35

40

45

Figure 6. Horizontal cross-section (at z = 3d/4 = 3 cm) of the 3D doubly periodic, Cartesian
model: a) zonal velocity u3D (in cm s−1) and b) temperature T3D (in ◦C) after 345 s of integration
time.

zonal, meridional and vertical direction. A steady 2D simulation lasting for 10000 s is
followed by a 3D model run until a baroclinic wave is fully developed. It turns out
that the maximum amplitude of the baroclinic wave appears after 345 s of integration
time. The initial baroclinic wave cycle is followed by weaker life cycles. The emission of
IGWs occurs in each baroclinic wave cycle. We focus on the first cycle since it shows
the largest IGW signal. Figure 5 shows the fields obtained from the 2D simulation. The
zonal velocity (figure 5a) and the temperature fields (figure 5b) satisfy the thermal wind
relation to good approximation. As expected from the gradient of the temperature along
the y-direction, two upper-level jets are visible pointing in opposite directions. Horizontal
cross-sections at z = 3d/4 = 3 cm from the subsequent 3D simulations are presented in
figure 6. A baroclinic wave structure is fully developed indicated by two meandering jets
in each half of the domain (figure 6a). In addition, the formation of two temperature
fronts can be observed in figure 6b.

3.2. IGW signal

The upcoming sections first describe the IGW characteristics appearing in the nonlin-
ear dynamics. After that, these results are compared with corresponding tangent-linear
simulations. The fields from the nonlinear annulus and the doubly periodic simulations
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Figure 7. Diagnosing balanced part in total horizontal velocity divergence in the nonlinear
annulus simulations: a) total horizontal divergence δ, b) balanced horizontal divergence δbal as
diagnosed from the omega equation and c) unbalanced horizontal divergence δunbal = δ − δbal.
Results show contour lines of a horizontal cross-section (at z = 3 cm) 20 s after the point of
initialisation of the tangent-linear model. All fields in s−1.

presented in section 3.1 are used to initialise the tangent-linear model (henceforth this
initial state is referred to as state at t = 0).

3.2.1. Balanced horizontal divergence

In many previous studies (O’Sullivan & Dunkerton 1995; Wang et al. 2009; Mirzaei
et al. 2014) the horizontal velocity divergence δ

δ =∇h · u =
1

r

[
∂u

∂ϑ
+
∂(rv)

∂r

]
(3.1)

turns out to be a well suited indicator for IGWs. Borchert et al. (2014) also used this
quantity to locate possible regions of IGW activity within the rotating annulus flow.
However, it is well known that δ also includes a balanced part δbal which should be
subtracted in order to make the IGW signal particularly clear. In this study we take this
into account and concentrate on the horizontal divergence obtained by subtracting the
balanced part using the quasi-geostrophic omega equation (see section 2.2.4). In order
to solve the omega equation numerically, we first apply a window function as defined
in (2.57) on the right-hand side in equation (2.58). The reason for this are very strong
gradients of∇·Q at the inner and outer side walls of the annulus leading to non-physical
high values of wbal at the walls when inverting (2.58). This measure is not critical since
the structure and the amplitude of wbal in the relevant inner domain is only very little
affected by this modification (not shown). Before presenting the results of the wave packet
analysis provided in the subsequent sections we briefly demonstrate the impacts of the
considerations explained above. Therefore, we choose as an example an integration time
of t = 20 s when the appearance of the distinct IGW packets is most illustrative. Figure
7a displays the horizontal divergence (3.1) and figure 7b the balanced part δbal obtained
from inverting the omega equation (see equation 2.59). δbal only consists of a few rather
large-scale features with comparable or smaller amplitudes than δ. A ‘couplet’ (Yasuda
et al. 2015) of horizontal divergence, most clearly visible in δbal, is striking in the lower left
part of the domain. It is associated with a descent-ascent motion (wbal ∝ −δbal) and was
firstly reported by Viúdez (2007). However, in that study the upwelling and downwelling
motions are not present in the balanced vertical velocity field obtained from the omega
equation, and the source is attributed to the material rate of change of the ageostrophic
differential vorticity. The difference between the full and the balanced part, here referred
to as unbalanced horizontal divergence δunbal, is presented in figure 7c. In general, there
are only small differences between δ and δunbal and particularly, the wave structures seen
in δ are not affected when subtracting δbal. Thus, we can confirm the assumption of
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Figure 8. As in figure 7, but for the doubly periodic, Cartesian model at t = 0 s.

Figure 9. Characterization of wave packets observed in the rotating annulus: a) contour plot
of horizontal cross-section (at z = 3 cm) of δunbal in cylinder geometry and b) the corresponding
Cartesian projection. The location of four different wave packets (WP1-WP4) is highlighted.
Contour values ranging from -0.05 s−1 to 0.05 s−1 (see figure 7).

Borchert et al. (2014) that the balanced part, as defined by quasi-geostrophic balance,
does not dominate in the divergence signal.

For consistency reasons we applied the same methodology also on the data of the
doubly periodic, Cartesian configuration. In contrast to the annulus, the application of a
window function is not required before inverting the omega equation. The resulting fields
are shown in figure 8. The balanced horizontal divergence is characterised by large scale
signals with maximum values located at the respective temperature fronts (see figure 6).
As already seen in the annulus configuration, the amplitudes are of the same order or
weaker than those of the total divergence. Moreover, the small-scale signal predominates
in the unbalanced horizontal divergence.

3.2.2. Properties of wave packets in the annulus simulations

This section provides a quantitative overview over the wave packets seen in the numer-
ical simulations of the rotating annulus experiment. The analysis can serve as reference
for related experimental studies. We consider the unbalanced horizontal divergence field
δunbal at time t = 20 s shown in figure 9. In addition to the cylindrical geometry (left),
it shows the corresponding Cartesian projection (right) required as input for the wave
diagnosis (see section 2.3). Compared to the baroclinic background fields at t = 0 s,
illustrated in figure 4, the general structure remains unchanged at t = 20 s except for a
slight drift in anticlockwise azimuthal direction. As highlighted in figure 9 four different
wave packets (WP1-WP4) can be identified. These wave packets are emitted distinctly
and are not the result of an initial single wave packet that splits during its evolution.
WP1 originates from the horizontal divergence couplet described in section 3.2.1. The
couplet is located at the jet-axis of the baroclinic wave (x ≈ 0.7 rad and r ≈ 53 cm in
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figure 9b) and the wave packet extends from 0.29 < x < 0.67 rad and 44 < r < 57 cm.
These findings agree with the vortex-dipole study of Viúdez (2007). He also found such
a couplet along the axis of the dipole and argued that it is the initial state of a frontal
IGW packet. WP2 exhibits a spiral structure arranged around the pressure minimum
of the baroclinic wave (1.06 < x < 1.27 rad and 40 < r < 55 cm in figure 9b). This
wave structure, which was already found in Borchert et al. (2014), is similar to the
IGWs observed in vortex dipole studies (for instance, Snyder et al. 2007, 2009; Viúdez
2007). Both, the wave packets detected therein and WP2 travel almost stationary with
the respective vortex structures. Lin & Zhang (2008) show that these wave packets are
initially plane waves, then begin winding up around the pressure minimum and finally
form the observed spiral pattern. WP3 is located close to WP1 at 0.38 < x < 0.67 rad
and 30 < r < 47 cm propagating behind the frontal structure of the baroclinic wave.
As described below in section 3.3.1, this wave packet is probably generated at the inner
side wall of the annulus and then propagates towards the interior of the domain. A
further wave packet (WP4) is present at the jet stream near the outer cylinder wall
(0.64 < x < 1.00 rad, 62 < r < 67 cm in figure 9b).

A more quantitative characterization of the wave packets is obtained by applying
the wave diagnosis (see section 2.3). By taking a mean constant azimuthal extent
Lx = 2π/3 (a+ (b− a)/2) = 94.25 cm, different wave parameters including wave numbers
k = kxeϑ − kyer + kzez, amplitudes A = (Ax, Ay, Az) and corresponding energies are
calculated.
The IGW energy is diagnosed from the horizontal divergence field δ according to the
formula

e =
〈δ2〉
k2h

(3.2)

with horizontal wave number kh =
(
k2x + k2y

)1/2
. Equation (3.2) has been derived from

the polarization relations for hydrostatic IGWs (see eq. (10) in Zülicke & Peters (2006)
or eq. (A4) in Marks & Eckermann (1995)). It is assumed that the divergence is mainly
unbalanced and resembles IGW modes. For a local phase-independent estimate of its
variance (equal to half of the squared amplitude) and the related horizontal wave number
the Hilbert transform is used to give

e =
1

2

A[δ]2

kx[δ]2 + ky[δ]2
. (3.3)

The results are compiled in table 3. In order to simplify the comparison with laboratory
data, we provide wavelengths λ = 2π/|k| instead of wave numbers. Furthermore, figure
10 presents horizontal cross-sections of the weighted amplitude A (2.66) (left) and of the
wavelengths λ (right). The four earlier defined wave packets (WP1-WP4) are highlighted.
Considering the wave parameters in table 3, WP2 located at the pressure minimum is
the strongest WP in amplitude and therefore in energy. The wave diagnosis shows the
difference between WP1 and WP3 by the wave number in y-direction ky underlining the
different orientation of the two wave packets. WP4 shows the highest wavelength.

3.3. Tangent-linear simulations

In this section the influence of the forcing by the internal balanced flow on the IGW
field is investigated and compared to the generation by boundary-layer instabilities. The
tangent-linear model is therefore integrated with this forcing. To suppress the effect
of boundary-layer dynamics, the window function (2.57) is applied at every time step.
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Figure 10. Wave diagnosis output of rotating annulus experiment: horizontal cross-sections (at
z = 3 cm) of amplitude A in s−1 (left) and wavelength λ in cm (right). The locations of four
different wave packets (WP1-WP4) is highlighted.

Parameter WP1 WP2 WP3 WP4

kx
[
cm−1

]
1.2467 0.9948 1.5069 0.6761

ky
[
cm−1

]
1.2219 1.0565 0.4202 1.1297

kz
[
cm−1

]
1.8144 1.7998 1.7598 1.4050

λ [cm] 2.4955 2.7177 2.6684 3.2629

A
[
s−1

]
0.0140 0.0218 0.0084 0.0074

e
[
10−5 cm2 s−2

]
3.2160 11.2840 1.4416 1.5796

Table 3. Tabularly overview of the wave parameters of WP1, WP2, WP3 and WP4
calculated by the wave diagnosis.

With the same purpose we consider the corresponding dynamics in the doubly periodic
Cartesian setup without side walls. Given a state from the fully nonlinear simulation,
separated into the balanced and unbalanced parts for initialization of the tangent-linear
model, two different initial states are chosen for the unbalanced part of the flow: first, the
unbalanced part is set to zero at t = 0 s to focus on the development of the unbalanced
flow radiated spontaneously by the geostrophically and hydrostatically balanced part.
Second, the tangent-linear model is initialised with the unchanged unbalanced part, to
observe how its structure develops with and without the balanced forcing.

3.3.1. Initially vanishing unbalanced flow part

First, we present the results of the tangent-linear simulations starting with vanishing
unbalanced flow part. By initialising the linear model with zero unbalanced part we
can focus on two aspects: first, we can verify whether the forced tangent-linear model
is capable of reproducing the signal seen in the fully nonlinear simulations, to justify
the main assumptions made in the derivation of the tangent-linear model, namely the
smallness of the unbalanced fields compared to the balanced fields and the neglect of
the nonlinear unbalanced terms. Second, we can quantify the contribution of the purely
balanced, nonlinear forcing terms on the right-hand side of the linear system. Only these
terms initially contribute to the time evolution of the unbalanced fields and therefore,
their role as a IGW source can be quantified. Figures 11a-c illustrate the horizontal
structure of the forcing terms (2.33) and (2.34) included in the zonal (azimuthal) and
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Figure 11. Horizontal cross-sections (at z = 3 cm) of the geostrophically and hydrostatically
balanced forcing terms for the annulus model at initial time t = 0 s, see (2.33) and (2.34).
Forcing of a) unbalanced zonal velocity uu (in cm s−2), b) unbalanced radial velocity vu (in
cm s−2) and c) unbalanced buoyancy Bu (in cm s−3).

Figure 12. Unbalanced horizontal velocity divergence in the annulus (at z = 3 cm) of a) the
nonlinear model and b) the tangent-linear model. Results are shown 20 s after the initialisation
of the tangent-linear simulation with zero unbalanced part. The location of wave packets is
highlighted by WP1-WP4 for the nonlinear and WP1′, WP2′, WP4′ for the linear model. WP3
is not existent in the tangent-linear model. Units in s−1.

meridional (radial) momentum and in the buoyancy equation (2.48) – (2.50). In general,
all fields consist of rather large-scale patterns with relatively large amplitudes around the
pressure minimum. Moreover, the signal of the couplet of horizontal divergence is clearly
visible left from the low pressure center, particularly in the forcing of the buoyancy (figure
11c). The forcing terms exhibit typical (rotated) dipole structures at both locations and
the amplitudes of the forcing of the horizontal velocity components are of the same
order. A similar situation is found in the vortex dipole study of Snyder et al. (2009),
where large-scale patterns also only exist in the center of the vortex dipole in case of the
horizontal velocity and the potential temperature forcing. The amplitudes of the velocity
forcings are also of the same order, however, the fields show tripolar or even quadrupolar
structures. The results of the tangent-linear simulations are shown in figure 12 in form
of the unbalanced horizontal velocity divergence of the full (figure 12a) and the linear
model (figure 12b). The fields are plotted after t = 20 s of integration time when there is
a maximum agreement between the full and the linear fields. Wave packet WP1 which
is observed in the full model also appears in the tangent-linear simulations where it is
highlighted by WP1′. Furthermore, the tangent-linear simulations show wave activity at
the pressure minimum, referred to as WP2′. WP3 is not existent in the tangent-linear
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configuration. Wave packet WP4 also develops in the tangent-linear model (WP4′), even
if the wave amplitude is weaker compared to the full model.

Although the extent of WP1′ is shorter than that of WP1 and the wave amplitudes
are slightly overestimated, the reproducibility of WP1 by the linear model implies that
the ascent-descent couplet also develops in the linear dynamics. The spiral structure of
WP2′ is more pronounced than in the full model (WP2) indicating a stronger vortex
structure simulated by the linear model. The explanation for the absence of WP3 in the
linear model is that it is generated by boundary layer instabilities occurring at the inner
side wall of the annulus and propagates into the interior of the domain. As mentioned in
section 1, proposed generation mechanism for the radiation of such waves are, for instance,
discussed in Jacoby et al. (2011) and Randriamampianina & Crespo del Arco (2015). Due
to the application of the window function implemented in our linear model (see section
2.2.3) we suppress these processes. Consequently, such wave packets can not be found
in the linear simulations. Likewise, the development of WP4′ at the jet stream near the
outer cylinder wall is affected by the window function resulting in weaker amplitudes.
The fact that WP1 and, to some extent, WP2 and WP4 also form in the forced linear
model supports the assumption that part of the IGWs observed in the rotating annulus
experiment actually originates from the jet-front system and not from boundary layer
instabilities. Since we initialise our linear equations with a vanishing unbalanced part we
can explicitly show that the balanced forcing terms induce the generation of the IGWs.
The different structure and amplitude of WP2′ might be explained by two main reasons.
As shown in section 3.2.2, WP2 exhibits the largest amplitude of all WPs. Therefore,
nonlinear self-interactions might play an important role in shaping WP2. In addition,
quasi-geostrophic theory is assumed to be less accurate for a flow with relatively strongly
curved trajectories (e.g. Fultz 1991; Warn et al. 1995; Zhang et al. 2000), a circumstance
which is present for the vortex observed in our study. And indeed, we observe that the
band of relatively strong velocity amplitude around the pressure minimum (see figure
4c) is less well reproduced in ub than other regions of the velocity field (not shown).
In order to underpin the previous statements, we consider the results obtained from the
modified Cartesian, doubly periodic model. In this case boundary layer effects from side
walls can definitely be excluded. As initial state we use the simulation output described
in section 3.1.2 showing a fully baroclinic wave structure along with already pronounced
IGW signals. The results which are most illustrative after t = 5 s of integration time
are provided in figure 13 where horizontal cross-sections of the horizontal divergence
of the nonlinear (figure 13a) and the forced linear model (figure 13b) are displayed. In
principle, the full model exhibits two wave packets, WPC1 and WPC2, each appearing
at the temperature fronts in the region with the maximum horizontal wind speeds (see
figure 6). The tangent-linear simulation results show a very good agreement. The two
wave packets are captured well in both, location and amplitude. Since there are only
minor differences in the two divergence fields, the capabilities of the tangent-linear model
to simulate the dynamics seen in the full system are supported once more. Moreover, the
results strengthen the assumption that part of the IGWs observed in the annulus actually
come from the dynamics taking place in the inner region which are unaffected by cylinder
walls.

The wave packets presented here are emitted during a baroclinic-wave life cycle and
are eventually dissipated. New wave packets are emitted during each life cycle, as long
as they present the required forcing properties. We can illustrate this somewhat periodic
emission, and then dissipation, of IGW following the life cycles by considering the time
series of the volume averaged horizontal divergence in view of the total kinetic energy of
the flow, sampled during the direct numerical simulations. The first quantity indicates
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Figure 13. Unbalanced horizontal velocity divergence (in s−1) in the Cartesian model
configuration (at z = 3 cm) of a) the nonlinear model and b) the tangent-linear model. Results
are shown 5 s after starting the linear simulation with zero unbalanced part. Location of wave
packets are highlighted by WPC1 and WPC2 for the nonlinear and WPC1′ and WPC2′ for the
linear model.

the amount of IGW activity while the second points to the state of the large scale
flow. In the annulus configuration, this shows a surge of the IGW activity in the time
interval considered for tangent linear simulations (figure 14a). The amplitude of IGW
activity grows until 150 s after the start of tangent linear simulations and then collapses
at 200mathrms, as indicated by the increase, and then decrease, of volume averaged
horizontal divergence. Visualisations (not shown) indicate that nearly no wave packets
are present in the flow in the time interval [200; 275] s. IGW then reappear, concomitantly
with the increase of volume averaged horizontal divergence. The kinetic-energy variations
indicate that each of these emission events occur during two successive baroclinic-wave
life cycles. The picture is very similar in the cartesian model simulations. A strong growth
of horizontal divergence occurs during the first IGW emission (figure 14b), studied by
tangent linear simulations. We again find a series of successive growth, and then decay,
of IGW activity. Note that in the Cartesian configuration, the amplitude of each event
decreases cycle after cycle and that the duration on which IGW are emitted is shorter
(150 s in annulus simulations versus 30 s in Cartesian simulations). We can directly
correlate the appearance and increase of IGW activity to the forcing we have identified.
There are several other competing effects that lead to them being sustained during a
smaller or longer duration. In both cylindrical and Cartesian configurations the relatively
high Ekman number means that viscosity (and thermal diffusion) will dissipate the IGW
faster than in atmospheric conditions. A stronger shear near the inner wall of the annulus
helps maintaining IGW longer in this location, leading to a longer lifetime of each IGW
wavepacket.

3.3.2. Initially non-zero unbalanced part

Next, we perform tangent-linear simulations with an initially non-zero unbalanced
state. In addition to the full and the forced linear model simulations, we present results
in which the geostrophically and hydrostatically balanced forcing terms are set to zero. It
is important to note that in our initial state IGWs already exist within the domain. Thus,
the main purpose of this analysis is to compare the influence of the forcing on existing
waves. Figure 15a shows a cross-section of the horizontal divergence field (at z = 3 cm)
serving as initial state for all model configurations. The corresponding results after 20 s
of integration time are presented in figures 15b for the full, and in figure 15c,d for the
forced and the unforced tangent-linear model. Additionally, in order to evaluate the linear
results more quantitatively, the Pearson correlation coefficients of the (un)forced linear
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Figure 14. Time series of the volume average of the horizontal divergence δ and of the total
kinetic energy of the flow Ekin starting at the same time as the tangent linear simulations. a)
in the rotating annulus, b) in the Cartesian model. The time average is subtracted from the
kinetic energy time series.

Figure 15. Unbalanced horizontal velocity divergence (in s−1) in the annulus (at z = 3 cm)
for different model setups. Upper row: fields of the nonlinear model at a) initial time t = 0 s
and b) after 20 s of integration time. Lower row: results of the corresponding forced c) and
unforced d) linear simulations after 20 s of integration time. All simulations are initialised
with the same unbalanced field shown in a). Location of wave packets is highlighted by
WP1-WP4 for the nonlinear, WP1′-WP3′ for the forced linear and by WP1′′-WP3′′ for the
unforced linear model. WP4 is hardly identifiable in the tangent-linear configurations. The
Pearson correlation coefficient showing the correlation between the two linear and the nonlinear
horizontal cross-sections can be found in the lower right corner.
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and the full horizontal cross-sections are computed. For this, only those grid points are
taken into account which are not affected by the application of the window function (see
section 2.2.3). Since these simulations are initialised with identical unbalanced fields,
there is a correlation of one between the tangent-linear and the nonlinear fields at the
beginning. After 20 s of integration time, the forced tangent-linear model (figure 15c)
shows a correlation of 0.5, whereas the correlation of the unforced model (figure 15d)
is significantly lower (0.2). A particular reason for the lower correlation in the unforced
configuration is the more pronounced spiral structure around the pressure minimum
compared to the full and the forced tangent-linear model. A time evolution of the
3D correlation coefficients is provided in figure 16. Compared to the forced annulus
simulations (solid line), the correlation of the unforced linear model (dashed line) initially
decreases much faster until both curves show a quite similar slope. After about t = 35 s
of integration time, the forced correlation starts to converge towards the unforced one.
From this time on, the forced linear fields move clearly away from the dynamics observed
in the full model, probably caused by the neglect of the nonlinearities and by the use of
the window function.
Wave packets WP1-WP3 can be identified in both linear simulations, labelled with WP1′-
WP3′ in the forced and WP1′′-WP3′′ in the unforced tangent-linear configuration (see
figure 15). In general, both linear simulations capture the positions, wavelengths and
orientations of wave packets WP1 and WP3. However, an amplification of the wave
amplitudes can be observed in both systems. The shape of WP2 is still reasonably present
in the forced model (WP2′). In contrast, wave packet WP2′′, which is only affected by the
linear operator Lu, shows clear differences in structure and a significant overestimation
of the amplitudes. Hence, WP2 is continuously affected by the balanced part of the
flow. As already mentioned in section 3.3.1, the fact that WP4 is hardly identifiable in
the (un)forced tangent-linear simulations is again a result of the window function which
damps the development of the wave packet. In summary, we can state that the forcing
of IGWs by the balanced flow has a significant influence on the time development of
the overall structure of WP2, manifested by the much faster decrease in correlation in
the unforced model. However, there is only a minor impact on the propagation of the
small-scale wave packets WP1 and WP3 which were already present at initial time. This
is consistent with the theoretical consideration given in section 2.2.3.
Unfortunately, it is not possible to perform corresponding experiments in the doubly
periodic, Cartesian configuration. When initialising the model with a non-zero unbal-
anced field, the linear fields start to diverge after a few seconds of integration time. In
particular, we detect unbounded linear instabilities at grid-scale. The reason for this is
most likely the neglect of the nonlinear terms which leads to an increased energy cascade
towards small-scale structures causing an exponential growth of the latter. Nevertheless,
the results obtained during the short stable time period confirm the results of the annulus
investigations. The correlation of the unforced model decreases faster compared to the
forced one. Moreover, there seems to be no direct impact on the wave propagation of
already existing wave packets which, in this configuration, must have been radiated by
the internal flow.

4. Conclusions

This study investigates the role of internal flow dynamics, as opposed to boundary-
layer instabilities, in the generation of IGWs observed in numerical simulations of the
differentially heated rotating annulus experiment. The focus is on an atmosphere-like
configuration of the annulus with a ratio of N/f > 1 (Borchert et al. 2014). This set-up of
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Figure 16. Time evolution of 3D correlation coefficient between tangent-linear and nonlinear
simulation for the annulus model configuration. Solid line: correlation between the nonlinear
and the forced linear model. Dashed line: correlation between the nonlinear and the unforced
linear model.

the experiment has not been investigated in the laboratory yet, and it certainly pushes the
limits of validity of the Boussinesq approximations. Although we believe that the latter
still apply here, final experimental validation is pending, and hence highly desirable. For
a clearer view of the internal dynamics, not affected by instabilities at the side wall, we
also consider a closely related setup with doubly periodic horizontal boundary conditions
where the baroclinically unstable large-scale state is forced by thermal relaxation.

On the larger scales, our simulations show a baroclinic wave structure exhibiting a jet-
front system similar to its atmospheric counterpart. Additionally, small-scale structures
which are associated with IGWs occur in four distinct wave packets in the annulus setup
and in two wave packets in the doubly periodic setup. These wave packets are diagnosed
as part of the unbalanced flow. Here, geostrophic and hydrostatic equilibrium are used as
balance concepts, and the balanced flow is obtained by potential vorticity inversion and
application of the QG omega equation. The generation of unbalanced flow is investigated
systematically by reformulating the dynamics in terms of an explicit interaction between
balanced and unbalanced flow. The balanced forcing of the unbalanced flow is identified,
and its effect is studied in tangent-linear models of the unbalanced flow. In these the time-
dependent balanced flow is prescribed, as diagnosed from the nonlinear simulations, and
all nonlinear self-interactions of the unbalanced flow are neglected. The tangent-linear
simulations of the annulus setup indicate that three wave packets are radiated from
the internal flow, whereas a fourth one is most likely generated at the side wall of the
annulus. Moreover, it turns out that the forcing of the IGWs by the internal balanced
flow significantly contributes to the overall wave generation. The unbalanced flow forced
in the doubly periodic setup very clearly exhibits the same structure as observed in the
wave packets from the nonlinear simulations. The relatively strong temperature contrast
between the two side walls might suggest that convective gravity-wave generation (Beres
et al. 2004; Song & Chun 2004, e.g.) also contributes to the observed signal. We do not
see any convective cells in our simulations, however, so that this process seems to be
excluded.

Our study provides deepened insight about the findings of Borchert et al. (2014) who
performed simulations in the same annulus configuration. They observe clear IGW signals
close to the inner boundary and within the baroclinic wave. Based on our investigations
we are now able to assign source regions and corresponding generation mechanisms of the
respective wave patterns. In principle, we underpin the assumption made by Borchert
et al. (2014) that a significant part of the IGWs observed in the simulations actually
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originate from the jet-front system. Along with the wave pattern arranged around the
pressure minimum of the baroclinic wave, we observe additional wave packets developing
from a couplet of horizontal divergence, also being generated within the internal flow,
and at the jet-stream located near the outer cylinder wall. Without doubt, there is a
substantial part of IGWs which is generated at the the inner side wall before propagating
into the interior of the annulus domain. This mechanism is studied extensively by Jacoby
et al. (2011) and Randriamampianina & Crespo del Arco (2015). However, both of these
studies consider a traditional annulus setup with N/f < 1.

The internal forcing mechanism considered in our study is due to the balanced flow.
We therefore conclude that part of the IGWs are generated continuously from the time
dependent large-scale balanced flow. Our balance concept relies on small Rossby numbers,
and partial contribution of higher-order balanced components to our unbalanced flow
cannot be excluded. We do observe only modest Rossby numbers, however, so that we
take the forcing as an indication for spontaneous imbalance (Zhang 2004; Vanneste 2013).
This is interesting not only because the differentially heated rotating annulus experiment
allows experimental investigations of this process in the laboratory, but also because
it exhibits a more complex, more realistic jet-front system compared to the idealized
vortex dipole studies of Snyder et al. (2009) and Wang & Zhang (2010). We hope that
the systematic flow and dynamics decomposition employed here can help systematic
investigations of IGW radiation by jets and fronts in even more realistic atmospheric
simulations, following the overall aim to develop and improve corresponding physically
based source parameterizations.
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Appendix A

Based on the PV defined in (2.21) we can derive a prognostic equation for the PV as
follows

DΠ

Dt
=

Dζ

Dt
+

f

N2

D

Dt

(
∂B

∂z

)
, (A 1)

with f, N2 = const. Therein, the material derivative of the vertical component of the
vorticity is (Vallis 2006)

Dζ

Dt
= −(f + ζ)δ − ∂u

∂z
· (ez ×∇hw) (A 2)

and, using (2.24) and (2.26),

D

Dt

(
∂B

∂z

)
=

(
N2 +

∂B

∂z

)
δ − ∂u

∂z
· ∇hB. (A 3)

As a result we obtain

DΠ

Dt
= −

(
ζ − f

N2

∂B

∂z

)
δ − ∂u

∂z
·
(
ez ×∇hw +

f

N2
∇hB

)
. (A 4)
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Appendix B

Here, we extract the purely balanced part in Dub/Dt and DBb/Dt as it is required
as forcings in the tangent-linear model in section 2.2.3. Therefore, we apply the material
derivative on (2.19) and (2.20) which gives

Dub

Dt
=

1

f
ez ×

(
D

Dt
∇hpb

)
=

1

f
ez ×

(
∇h

Dpb
Dt
−∇hv · ∇pb

)
(B 1)

DBb

Dt
=

D

Dt

∂pb
∂z

=
∂

∂z

(
Dpb
Dt

)
− ∂v

∂z
· ∇pb. (B 2)

To obtain an expression for Dpb/Dt we first consider

∇qg
Dpb
Dt

=
∂

∂t
∇qgpb +∇qg (v · ∇pb)

=
∂

∂t
∇qgpb +∇qgv · ∇pb + (v · ∇)∇qgpb

=
D

Dt
∇qgpb +∇qgv · ∇pb (B 3)

and then we calculate

∇2
qg

Dpb
Dt

=∇qg · ∇qg
Dpb
Dt

=∇qg ·
D

Dt
∇qgpb +∇qg · (∇qgv · ∇pb). (B 4)

The first term on the right-hand side can be written as

∇qg ·
D

Dt
∇qgpb =

∂

∂t
∇2

qgpb +∇qg · (v · ∇∇qgpb)

=
∂

∂t
∇2

qgpb +∇qgv ·· ∇∇qgpb + (v · ∇)∇2
qgpb

=
D

Dt
∇2

qgpb +∇qgv ·· ∇∇qgpb (B 5)

and the second

∇qg · (∇qgv · ∇pb) = ∇2
qgv · ∇pb +∇qgv ·· ∇∇qgpb, (B 6)

where ·· denotes the double scalar product. Given two dyads ab and cd, with a, b, c and
d being arbitrary vectors, their double scalar product is defined as (Zdunkowski & Bott
2003)

ab ·· cd = (b · c) (a · d) = a · (b · cd) = (ab · c) · d = (d · a) (c · b) = cd ·· ab. (B 7)

Furthermore, given an arbitrary normal basis ei, i = 1, 2, 3, in which two tensors A and
B are measured: A = Aijeiej and B = Bklekel, their double scalar product reads

A ··B = AijBkleiej ·· ekel = AijBkl (ej · ek) (ei · el) = AijBji. (B 8)

In summary we have

∇2
qg

Dpb
Dt

=
D

Dt
∇2

qgpb + 2∇qgv ·· ∇∇qgpb +∇2
qgv · ∇pb (B 9)

so that, with ∇2
qgpb = fΠ,

Dpb
Dt

= ∇−2qg

(
f

DΠ

Dt
+ 2∇qgv ·· ∇∇qgpb +∇2

qgv · ∇pb
)
. (B 10)
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Finally, we can separate the balanced part in Dpb/Dt

Dpb
Dt

=

(
Dpb
Dt

)
b

+

(
Dpb
Dt

)
u

, (B 11)

with (
Dpb
Dt

)
b

= ∇−2qg

(
∇2

qgub · ∇hpb
)
, (B 12)(

Dpb
Dt

)
u

= ∇−2qg

(
f

DΠ

Dt
+ 2∇qgvu ·· ∇qgpb +∇2

qgvu · ∇pb
)
. (B 13)

Note that∇qgub ·· ∇∇qgpb does not contribute to the balanced part in Dpb/Dt. Using

abh ·· cd = (bh · c) (a · d) = (bh · ch) (a · d) = abh ·· chd, (B 14)

where bh is an arbitrary horizontal vector, we obtain

∇qgub ·· ∇∇qgpb =∇qgub ·· ∇h∇qgpb =
1

f
[∇qg (ez ×∇hpb)] ·· ∇h∇qgpb

= − 1

f

(
∇qg∇hpb︸ ︷︷ ︸

≡A

×ez
)
·· ∇h∇qgpb = − 1

f
(A× ez) ··AT. (B 15)

Since a tensor can be formulated as a sum of dyads A =
∑
i aibi (compare (B 8)), we

can apply (Zdunkowski & Bott 2003; Wilson 1929)

(ab× c) ·· de = [(b× c) · d] (a · e) = − [d · (c× b)] (a · e)

= − [b · (d× c)] (a · e) = −b · [(a · e) (d× c)] = −b · [a · (ed× c)]

= −ba ·· (ed× c) = − (ab)
T ··

[
(de)

T × c
]

(B 16)

to (B 15) which yields

− 1

f
(A× ez) ··AT =

1

f
AT ·· (A× ez) =

1

f
(A× ez) ··AT, (B 17)

where in the last step A ··B = B ··A (compare (B 7)) has been used. The equation (B 17)
can only be satisfied if ∇qgub ·· ∇∇qgpb = 0.
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Viúdez, Á. & Dritschel, D. G. 2006 Spontaneous generation of inertia-gravity wave packets
by balanced geophysical flows. J. Fluid Mech. 553, 107–117.

von Larcher, T. & Egbers, C. 2005 Experiments on transitions of baroclinic waves in a
differentially heated rotating annulus. Nonlin. Processes Geophys. 12, 1033–1041.

Van der Vorst, H. A. 1992 Bi-cgstab: A fast and smoothly converging variant of bi-cg for
the solution of nonsymmetric linear systems. SIAM Journal on scientific and Statistical
Computing 13 (2), 631–644.

Wang, S. & Zhang, F. 2010 Source of Gravity Waves within a Vortex-Dipole Jet Revealed by
a Linear Model. J. Atmos. Sci. 67 (5), 1438–1455.

Wang, S., Zhang, F. & Snyder, C. 2009 Generation and propagation of inertia-gravity waves
from vortex dipoles and jets. J. Atmos. Sci. 66, 1294–1314.

Warn, T., Bokhove, O., Shepherd, T. G. & Vallis, G. K. 1995 Rossby number expansions,
slaving principles, and balance dynamics. Q. J. R. Met. Soc. 121, 723–739.

Williamson, J. H. 1980 Low-storage Runge-Kutta schemes. J. Comp. Phys. 35, 48–56.
Wilson, E. B. 1929 Vector analysis, a text-book for the use of students of mathematics and

physics, founded upon the lectures of J. Willard Gibbs. New Haven: Yale University Press.
Wu, D. L. & Zhang, F. 2004 A study of mesoscale gravity waves over the North Atlantic with

satellite observations and a mesoscale model. J. Geophys. Res. Atmos. 109 (22), 1–14.
Yasuda, Y., Sato, K. & Sugimoto, N. 2015 A Theoretical Study on the Spontaneous

Radiation of InertiaGravity Waves Using the Renormalization Group Method. Part I:
Derivation of the Renormalization Group Equations. J. Atmos. Sci. 72 (3), 957–983.

Zdunkowski, W. & Bott, A. 2003 Dynamics of the atmosphere: a course in theoretical
meteorology . Cambridge: Cambridge University Press.

Zhang, F. 2004 Generation of mesoscale gravity waves in upper-tropospheric jet–front systems.
J. Atmos. Sci. 61, 440–457.

Zhang, F., Koch, S. E., Davis, C. A. & Kaplan, M. L. 2000 A survey of unbalanced flow
diagnostics and their application. Advances in Atmospheric Sciences 17 (2), 165–183.

Zimin, A. V., Szunyogh, I., Patil, D., Hunt, B. R. & Ott, E. 2003 Extracting envelopes
of rossby wave packets. Monthly weather review 131 (5), 1011–1017.
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