

Niels Burkhardt

Introduction to Functional Introduction to Functional
VerificationVerification

Niels Burkhardt

OverviewOverview

 Verification issues
 Verification technologies
 Verification approaches
 Universal Verification Methodology
 Conclusion

Niels Burkhardt

Functional Verification issuesFunctional Verification issues

 Hardware Designs get more and more complex
 Hand-written stimulus (directed test) is difficult to write

and maintain
 Corner cases are difficult to catch
 Visual inspection of waveforms in order to trace a bug is a

tedious task
 “The amount of time spent on verification now exceeds the

amount of time spent on design, comprising up to 70
percent of the total development effort.”

Goal: Find bugs early and fast !!

Niels Burkhardt

Verification RequirementsVerification Requirements

 Automation
 Progress measurement
 Reusability
 Easy to write and to maintain
 Find all bugs

Niels Burkhardt

Verification TechnologiesVerification Technologies

 Formal Verification
 Equivalence Checking
 Formal Property (Assertion) Checking

 Simulation Based Verification

Niels Burkhardt

Simulation Based VerificationSimulation Based Verification

Design Under Test (DUT)

Scoreboard

Stimulus
Generator

Monitor Monitor

 Monitor: samples interface activity
 Scoreboard: checks DUT behavior

Niels Burkhardt

Formal Property CheckingFormal Property Checking

 Proves the correct behavior for all operation states
 Design under test (DUT) gets translated into

boolean expressions
 No input stimulus is needed – the stimulus is

created by the tool
 Properties describe the behavior of the design

 Assertions for DUT behavior
 Constraints for environment behavior

Niels Burkhardt

Equivalence Checking Equivalence Checking

 Proves the exactly same behavior of different
design representations

 e.g. RTL vs. synthesis net list
 Several tools in the design process change the

design
 Design for Test (DFT) inserts additional logic
 Logic optimizations
 Engineering Change Orders (ECOs)

Niels Burkhardt

Verification ApproachesVerification Approaches

 Transaction Based Verification
 Coverage Driven Verification
 Constrained Random Testing
 Assertion Based Verification

Niels Burkhardt

Transaction Based VerificationTransaction Based Verification

 Abstraction from low-level signals
 Contains abstract tasks that hide the

implementation from the engineer
 Enhances reusability
 “task” in Verilog

grant

valid

request

data

addr

DUTStimulus
Generator

Transaction

address

data

Niels Burkhardt

Coverage Driven VerificationCoverage Driven Verification

 Coverage metrics are used to ascertain whether a
test verified a given feature

 Uncovers holes in the verification process
 Adjusts stimulus to check cases that have not yet

been covered
 Defines a metric to measure verification progress
 Functional coverage, code coverage, assertion

coverage, test coverage

Niels Burkhardt

Constrained Random TestingConstrained Random Testing

 Focuses on input stimulus generation
 Randomized stimulus is generated automatically
 Stimulus is filtered by constraints in order to

achieve only valid test patterns

Niels Burkhardt

Assertion Based VerificationAssertion Based Verification

 Assertions check the state of a DUT
 Run concurrently and ensure correct functional

behavior
 Increase observability
 Can be used for formal verification

property legal_data_valid;
 @(posedge clk) disable iff(!res_n)
 (data_valid && $rose(sop)) |-> ##[1:32] ##1 eop;
endproperty : legal_data_valid

data_valid : assert property(legal_data_valid);

Niels Burkhardt

Verification PlanVerification Plan

 Defines the functionality of the DUT
 Checks
 Coverage

 Does NOT define how the DUT has to be verified
 Coverage results are mapped to the verification

plan for analysis

Functional
& Design

Specs

Functional
& Design

Specs

Functional
& Design

Specs

Verification
Plan

Niels Burkhardt

Verification PlanVerification Plan

Niels Burkhardt

Verification FlowVerification Flow

Functional
Specification

Verification Plan

Execute
(Regression)

BuildAnalyze

Signoff?

•Testbenches

•Coverage Def.

•Assertions

•Simulation

•Formal

•Coverage

No

Done

Yes

Niels Burkhardt

Universal Verification Methodology Universal Verification Methodology
(UVM)(UVM)

 A standard for building simulation based
verification environments

 Class library based on SystemVerilog
 Key features

 Data design and stimulus generation
 Building and running a verification environment
 Coverage modeling and checking

 Focuses on re-usability
 Maintained by Accellera

Niels Burkhardt

Universal Verification Component Universal Verification Component
(UVC)(UVC)

 Combines all components for a single interface
into a reusable package

UVC

Agent

MonitorDriver

Sequencer
Agent

MonitorDriver

Sequencer

 Sequencer: creates transactions
 Driver: transform transactions

into stimulus
 Monitor: samples stimulus –

turns into transactions
 Agent: environment for

sequencer, driver and monitor

Niels Burkhardt

UVM TestbenchUVM Testbench

Scoreboard

HT
Interface

DUT
I2C

Interface

Ethernet
Interface

Ethernet
Interface

I2C UVC

MD
S

HT UVC

MD
S

ETH UVC

MD
S

ETH UVC

MD
S
ETH UVC

MD
S

Testbench

Virtual Sequencer

Niels Burkhardt

ConclusionConclusion

 Traditional design simulation has many drawbacks
 New verification methodologies improve the task

of finding bugs
 Advanced verification methods have a high

learning curve
 But: Once established, functional verification

increases the productivity

	Introduction to Functional Verification
	Slide 2
	Functional Verification issues
	Slide 4
	Verification Technologies
	Simulation based Verification
	Slide 7
	Slide 8
	Verification Approaches
	Transaction Based Verification
	Coverage Driven Verification
	Constrained Random Testing
	Assertion Based Verification
	Slide 14
	Slide 15
	Verification Flow
	Slide 17
	Slide 18
	An Example: Extoll Verification
	Slide 20

