

Introduction to Functional Verification

Overview

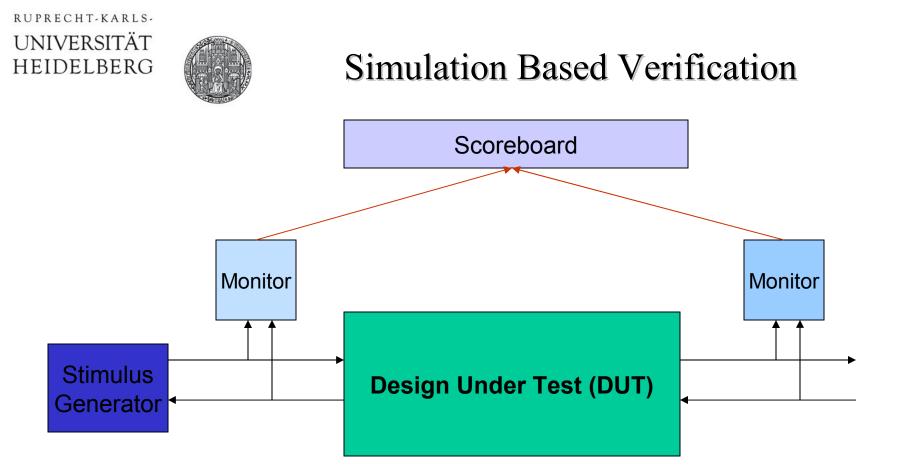
- Verification issues
- Verification technologies
- Verification approaches
- Universal Verification Methodology
- Conclusion

Functional Verification issues

- Hardware Designs get more and more complex
- Hand-written stimulus (directed test) is difficult to write and maintain
- Corner cases are difficult to catch
- Visual inspection of waveforms in order to trace a bug is a tedious task
- "The amount of time spent on verification now exceeds the amount of time spent on design, comprising up to 70 percent of the total development effort."

Goal: Find bugs early and fast !!

Verification Requirements


- Automation
- Progress measurement
- Reusability
- Easy to write and to maintain
- Find all bugs

Verification Technologies

- Formal Verification
 - Equivalence Checking
 - Formal Property (Assertion) Checking
- Simulation Based Verification

- Monitor: samples interface activity
- Scoreboard: checks DUT behavior

Formal Property Checking

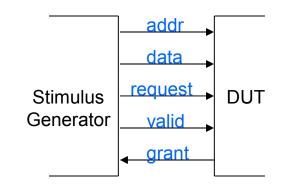
- Proves the correct behavior for all operation states
- Design under test (DUT) gets translated into boolean expressions
- No input stimulus is needed the stimulus is created by the tool
- Properties describe the behavior of the design
 - Assertions for DUT behavior
 - Constraints for environment behavior

Equivalence Checking

- Proves the exactly same behavior of different design representations
- e.g. RTL vs. synthesis net list
- Several tools in the design process change the design
 - Design for Test (DFT) inserts additional logic
 - Logic optimizations
 - Engineering Change Orders (ECOs)

Verification Approaches

- Transaction Based Verification
- Coverage Driven Verification
- Constrained Random Testing
- Assertion Based Verification



Transaction Based Verification

- Abstraction from low-level signals
- Contains abstract tasks that hide the implementation from the engineer
- Enhances reusability
- "task" in Verilog

Transaction			
	address		
	data		

Coverage Driven Verification

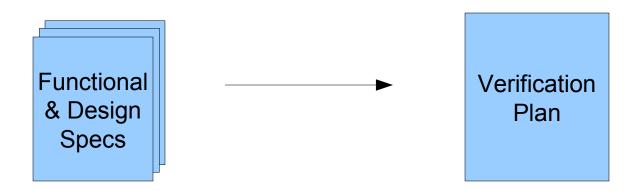
- Coverage metrics are used to ascertain whether a test verified a given feature
- Uncovers holes in the verification process
- Adjusts stimulus to check cases that have not yet been covered
- Defines a metric to measure verification progress
- Functional coverage, code coverage, assertion coverage, test coverage

Constrained Random Testing

- Focuses on input stimulus generation
- Randomized stimulus is generated automatically
- Stimulus is filtered by constraints in order to achieve only valid test patterns

Assertion Based Verification

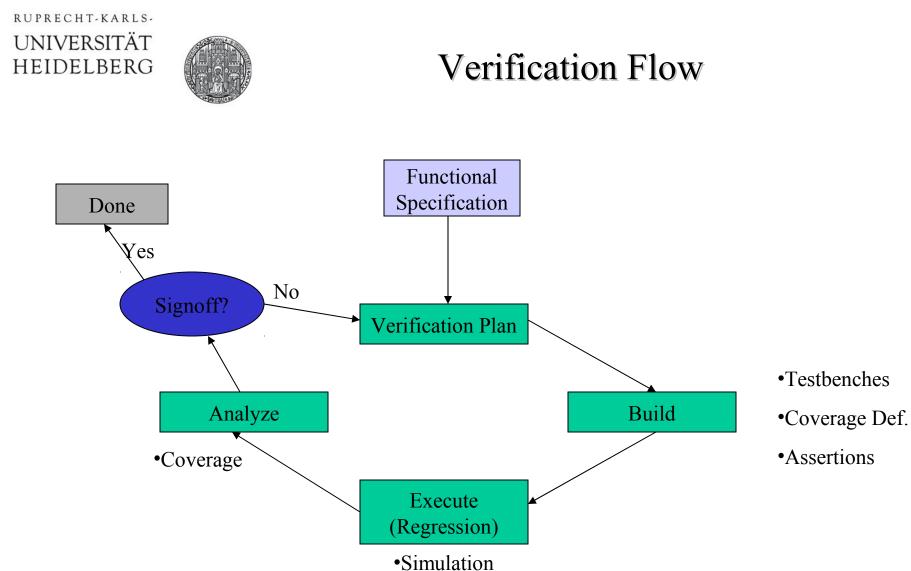
- Assertions check the state of a DUT
- Run concurrently and ensure correct functional behavior
- Increase observability
- Can be used for formal verification


property legal_data_valid; @(posedge clk) disable iff(!res_n) (data_valid && \$rose(sop)) |-> ##[1:32] ##1 eop; endproperty : legal_data_valid

data_valid : assert property(legal_data_valid);

Verification Plan

- Defines the functionality of the DUT
 - Checks
 - Coverage
- Does NOT define how the DUT has to be verified
- Coverage results are mapped to the verification plan for analysis


ruprecht-karls-UNIVERSITÄT

HEIDELBERG

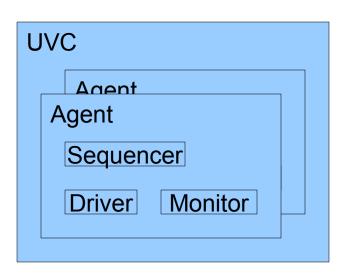
Verification Plan

VPIan Goal Relative Grade VPIan: /home/verification/extoll/svn/cag/verification/tb/extoll_r2/np/vpm/analysis/np.vplan Perspective: (automatic top)			
🚳 Info Display : Relevant Metrics 🛨	5.1.1.1 – Network Port to Host Port Interface		
E 6 86% 92% (OF) 5 - automatic_top	😢 🕭 🗞 Showing 13 elements		
E 1 86% 92% (0F) 5.1 - Network Port	Grade Checks Name C		
🕒 🗁 🚺 84% 👥 91% (OF) 5.1.1 – Functional Interfaces	97% (no checks) Packet Length		
🕀 💭 📴 97% 💽 100% (0F) 5.1.1.1 – Network Port to Host Port Inte	98% (no checks) Inter Packet gap		
🗄 💼 🚺 60% (OF) 5.1.1.2 – Host Port to Network Port Inte	75% (no checks) Shiftout Delay		
	100% (no checks) Each FCC		
🗈 💼 N/A (no checks) 5.1.1.4 – Register File Interface	100% (0F) Error signal		
🗐 👘 💼 😽 94% (OF) 5.1.2 – White Box			
🕀 🗁 100% (0F) 5.1.2.1 – NP Receiver			
🖅 💼 75% 83% (OF) 5.1.2.2 – NP Sender	Details Source		
	Section		
	General		
	Name Network Port to Host Port Interface		
	This vplan holds information about the coverage Details that is collected by the verification environment for the EXTOLL(r2) Xbar.		
	Verification Scope MODULE_NETWORK_PORT		
Find: 🔄 💁 Prev 🐥 NextMatch case	Subsertions 0		
	Simulation Ready		

•Formal

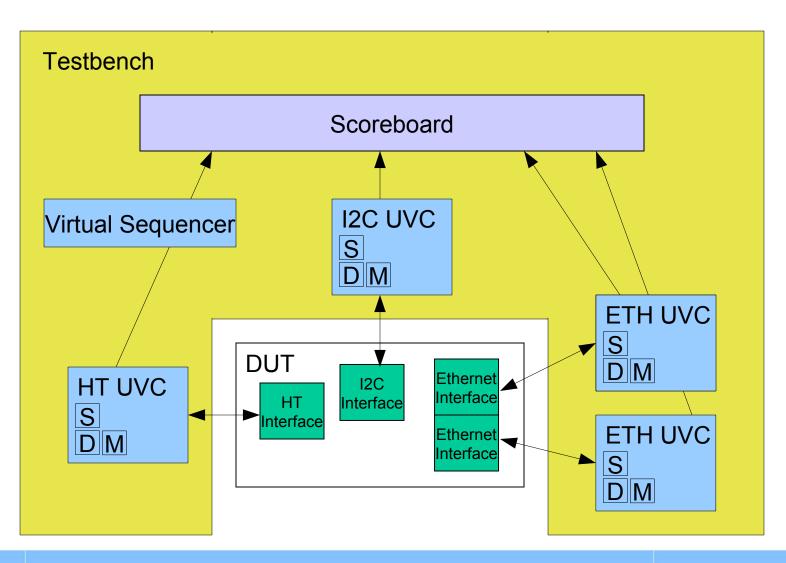
Universal Verification Methodology (UVM)

- A standard for building simulation based verification environments
- Class library based on SystemVerilog
- Key features
 - Data design and stimulus generation
 - Building and running a verification environment
 - Coverage modeling and checking
- Focuses on re-usability
- Maintained by Accellera



Universal Verification Component (UVC)

 Combines all components for a single interface into a reusable package



- Sequencer: creates transactions
- Driver: transform transactions into stimulus
- Monitor: samples stimulus turns into transactions
- Agent: environment for sequencer, driver and monitor

ruprecht-karls-UNIVERSITÄT HEIDELBERG

UVM Testbench

Conclusion

- Traditional design simulation has many drawbacks
- New verification methodologies improve the task of finding bugs
- Advanced verification methods have a high learning curve
- But: Once established, functional verification increases the productivity